
Modal Crash Types for WAR-Aware Intermittent Computing

MYRA DOTZEL, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
FARZANEH DERAKHSHAN, Illinois Institute of Technology, Chicago, Illinois, USA
MILIJANA SURBATOVICH, University of Maryland, College Park, Maryland, USA
LIMIN JIA, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA

Programs are executed intermittently on devices that experience arbitrary power failures such as Energy
Harvesting Devices (EHDs). To ensure progress, intermittent systems need runtime support to checkpoint state
and re-execute after power failure by restoring the last saved state. Such re-execution should be correct, i.e.,
simulated by a continuously powered execution. We study the logical underpinning of intermittent computing
and model checkpoint, crash, restore, and re-execution operations as computation on crash types. We draw
inspiration from adjoint logic and define crash types by introducing two adjoint modality operators to model
persistent and transient memory values of partial (re-)executions and the transitions between them caused by
checkpoints and restoration. Our formalism is general enough to accommodate a variety of checkpointing
policies. We define a crash type system for a core calculus. To prove the correctness of intermittent systems,
we define a novel logical relation for crash types.

CCS Concepts: • Theory of Computation → Semantics and reasoning; • Software and its engineering
→ Domain specific languages; • Computer systems organization → Embedded software;

Additional Key Words and Phrases: intermittent computing, modal crash type, logical relation

ACM Reference format:
Myra Dotzel, Farzaneh Derakhshan, Milijana Surbatovich, and Limin Jia. 2025. Modal Crash Types for WAR-
Aware Intermittent Computing. ACM Trans. Program. Lang. Syst. 47, 2, Article 5 (April 2025), 62 pages.
https://doi.org/10.1145/3716311

1 Introduction
Programs execute intermittently on batteryless Energy Harvesting Devices (EHDs), which are
powered solely by energy harvested from the environment (e.g., via solar panel) that is stored in
a re-chargeable energy buffer. When the energy buffer is full, the device powers on and begins

This work was generously funded in part through the Office of Naval Research Grant N000142412297 and National Science
Foundation Graduate Research Fellowship Program Grants DGE1745016 and DGE2140739. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views
of the sponsoring organizations.
Authors’ Contact Information: Myra Dotzel (corresponding author), Carnegie Mellon University, Pittsburgh, Pennsylvania,
USA; e-mail: mdotzel@andrew.cmu.edu; Farzaneh Derakhshan, Illinois Institute of Technology, Chicago, Illinois,
USA; e-mail: fderakhshan@iit.edu; Milijana Surbatovich, University of Maryland, College Park, Maryland, USA; e-mail:
milijana@umd.edu; Limin Jia, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA; e-mail: liminjia@andrew.cmu.edu.

This work is licensed under Creative Commons Attribution International 4.0.

© 2025 Copyright held by the owner/author(s).
ACM 1558-4593/2025/4-ART5
https://doi.org/10.1145/3716311

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

https://orcid.org/0009-0004-5133-2432
https://orcid.org/0000-0002-2156-2606
https://orcid.org/0009-0004-6948-6683
https://orcid.org/0000-0002-8160-349X
https://doi.org/10.1145/3716311
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3716311
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3716311&domain=pdf&date_stamp=2025-04-15

5:2 M. Dotzel et al.

program execution, consuming the available energy. When drained of all energy, the device powers
off, causing the execution to fail at an arbitrary point in code. The device can recharge and attempt
re-execution. EHDs enable new applications in environments where battery maintenance may be
costly or infeasible and have wide application in domains such as wildlife monitoring [39], small
satellites [31, 40], or smart civil infrastructure [1].

These applications may require running large pieces of code, consuming the energy available in
the energy buffer and causing a power failure. When power fails, volatile memory (e.g., the program
counter) is erased while nonvolatile memory persists. To facilitate forward progress despite these
power failures, intermittent system support is needed to save state before a power failure and
restore the saved state once energy is replenished. We refer to programs running on these devices
as intermittent computations. This process of checkpointing state, handling power failures, and
restoring state repeats until the computation is complete.

Two of the main mechanisms for handling power failures are atomic execution [32, 34, 54, 62] and
Just-in-Time (JIT) checkpointing [4, 5]. Atomic execution saves the program state in a checkpoint
upon entering an atomic region and if power fails before the atomic region execution completes,
execution resumes from the previously saved checkpoint. Alternatively, JIT checkpointing saves
program state immediately before a power failure, and upon reboot, execution resumes from the
saved state. Due to code re-execution, atomic regions are prone to memory consistency bugs caused
by reading results [32] or stale sensor data [57] from past executions of a program. The former
manifests in Write-after-Read (WAR) patterns where improper checkpointing of variables could
cause an execution to compute on the old values of past executions resulting in memory state
that could not be achieved by a continuously powered program execution. Programs that rely on
JIT checkpointing do not re-execute code, so they are free from the above mentioned memory
consistency bugs.

Given the inaccessible environments to which many EHDs are deployed, it is crucial that
intermittent systems run code correctly despite frequent power failures and partial (re-)executions.
Recent work [9, 17, 58, 59] provides a formal frameworkwith correctness criteria for reasoning about
intermittent executions, where correctness is defined as follows: Any correct intermittent execution
can be simulated by a continuously powered execution [59]. This criterion ensures that an intermittent
execution of a program can generate a result that matches the result of its continuously powered
execution regardless of the number of power failures and partial re-executions encountered.

Our work provides the first logical interpretation of the key operations of intermittent execution:
crash, restore, and re-execute. To accomplish this goal, we introduce crash types which capture the
key memory pattern of intermittent computing: Some computations persist across power failures
while others do not. In particular, nonvolatile memory state persists across power failures and
reboots, while volatile memory does not; results from completed (or checkpointed) computations
should persist across power failures, while partially computed results should not. The former we call
stable values and computations and the latter unstable values and computations. The key insight
is that the interactions between these stable and unstable components bear close resemblance to
shifts ↑, ↓ in adjoint logic [8, 53] for switching between different modalities. Computation of a stable
value can only rely on locations that store stable values, while computation on unstable values
can rely on both stable and unstable values. In particular, the checkpoint and restore operations
correspond to these shifts and are internalized in the definition of crash types; checkpointing moves
data from volatile memory (unstable) into nonvolatile memory (stable), and restore performs the
inverse operation.

We define a core calculus for intermittent computing and develop a type system for crash types
by using the two adjoint modality operators. The crash type of an intermittent computation is:
Cunit = ↓(nat { ↑Cunit) ∨ ↓↑unit which says that the computation will either encounter a

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

Modal Crash Types for WAR-Aware Intermittent Computing 5:3

power failure (the left disjunct), or succeed in producing a stable value and commit its values to
nonvolatile memory (the right disjunct). In the former case, the computation is suspended until
energy arrives, after which it will attempt re-execution. This recursive definition captures the
multiple re-executions of a computation under multiple power failures.

To prove correctness of intermittent executions, we define a logical relation over crash types
that relates a continuously powered execution to an intermittent execution. We prove that well-
typed programs are self-related, or semantically well-typed. We further prove that the intermittent
executions of semantically well-typed programs are idempotent, meaning that they compute the
same results as continuously powered executions.

This article makes the following contributions:

—The first logical interpretation of key operations of intermittent execution.
—Novel crash types to specify how stable and unstable portions of the system and computation
interact.

—A core calculus for crash types with progress and preservation to ensure correctness of an
execution over a single power cycle.

—A novel logical relation to prove the correctness of an execution over potentially many power
cycles.

Outline. The article progresses as follows:

—Section 2 reviews the basics of intermittent computing and a certain class of memory consis-
tency bug caused by re-execution. Through an example, we study a commonly used check-
pointing policy that enables correct program re-execution.

—Section 3 discusses crash types and their connection to adjoint logic [8, 53] which inspires
the formation of our calculus.

—Sections 4 and 5 present a novel calculus for atomic regions, starting with syntax and opera-
tional semantics (Section 4) to a formal type system (Section 5).

—Section 6 defines a semantic typing based on a logical relation to relate intermittent executions
with continuously powered executions.

—Section 7 extends the system to handle JIT regions. Due to their re-execution behavior, these
regions are not prone to the class of memory consistency bugs that informs the focus of
this article. We start with an example and then follow with formal rules. We discuss how
to compose these regions that resume execution from the line of failure with regions that
re-execute.

—Section 8 gives the precise theorem statements including progress and preservation to ensure
correctness over a single power cycle, the fundamental theorem of logical relation, which
shows that statically well-typed programs are semantically well-typed and adequacy, which
shows that semantically well-typed programs are idempotent. We sketch the proofs of the
fundamental theorem of logical relation and adequacy which, together, show that any correct
intermittent execution can be simulated by a continuously powered execution.

—Section 9 shows how to generalize the semantic typing to accommodate custom policies
beyond the two investigated in this article.

—Section 10 discusses related work, Section 11 provides further discussion of our system and
directions for future work, and Section 12 concludes the article.

Changes w.r.t. the Conference Version. This article extends the conference version [19] with
new formalisms to accommodate a more flexible checkpointing policy and includes full proofs.
Whereas the original system [19] checkpointed all written variables, here we show that it is
enough to checkpoint only variables that exhibit WAR patterns in regions that re-execute, a

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

5:4 M. Dotzel et al.

common optimization of real intermittent systems [32]. The resulting system subsumes the original
work [19]. Changes by section are as follows.

Section 2.2 is new. It discusses potential memory consistency bugs caused by WAR patterns in
atomic regions. As the new checkpointing policy for atomic regions is the main novelty of this
system, it has been restructured from the conference version [19] to first develop the system around
atomic regions and then discuss JIT regions later on, as these are not prone to WAR bugs.

Section 4 extends the original calculus [19] to accommodate the new checkpointing policy.
We introduce additional qualifiers (Figure 4) for more fine-grained tracking of write accesses
and define a memory access transition function that ensures proper memory accesses with these
new qualifiers.

Section 5 augments the typing rules for commands with a new post-context that tracks changes
in write accesses for variables.

Section 6 provides updated definitions of policies PwOff, Commit, and Restore that reflect the
new checkpointing policy. The logical relation is extended with extra conditions to help us show
that the final memories of the intermittent and continuously powered executions are the same.

Section 7 focuses on developing the system for JIT regions.
In Section 8, we provide additional explanation of the key theorems. The full proofs are given in

Appendices B–D which elaborate on the proof sketches provided in the conference version [19].
In Figure 27, we sketch the updated proof of logical relation which follows a similar structure to
our original proof but with additional obligations. We provide more thorough explanation with an
improved illustration (Figure 28) that highlights the steps taken during a crash, where the inductive
hypothesis is applied, and the base case.

Section 9 includes an updated explanation discussing how our type system accepts or rejects
certain branching programs depending on variable qualifiers.

Section 10 is extended with related work on persistent memory and broader discussion on crash
consistency.

We added Section 11 to discuss interesting system features and topics of future work.

2 Background
We first briefly review intermittent computing on EHDs (Section 2.1). Next we explain WAR
dependencies which are the main cause of potential memory inconsistencies in program regions
that re-execute, namely atomic regions (Section 2.2). Then we discuss how intermittent systems
save and recover state in the presence of a crash in the context of atomic regions (Section 2.3).

2.1 Intermittent Computing on EHDs
EHDs rely on intermittent system support to save necessary state and reboot in the event of a
power failure at checkpoints within the program. The placement and behavior of these checkpoints
depends on the intermittent execution model under which a program runs. There are two prevailing
intermittent execution models: JIT checkpointing [4, 5] and atomic execution [32, 34, 54, 62]. Under
a JIT model, the intermittent system saves state immediately before a power failure, transferring
necessary volatile state, such as the program counter, into nonvolatile memory. Upon reboot,
program execution continues from the same point. Under an atomic execution model, the program
is segmented into smaller pieces of code called atomic regions by a series of checkpoints (either
user-defined or determined automatically [16]). If there is a power failure before an atomic region
finishes executing, the system will reboot to the beginning of the atomic region, re-executing
that atomic region until it succeeds without power failure. Modern intermittent systems rely on a
combined “JIT + Atomics” so that the system switches to JIT checkpointing when not executing a
defined atomic region [28, 35, 58].

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

Modal Crash Types for WAR-Aware Intermittent Computing 5:5

Fig. 1. An example program with an atomic region and a JIT region.

The re-execution behavior of atomic regions complicates the reasoning about their correctness
with respect to memory consistency. Next, we discuss how re-execution could cause memory
consistency bugs if checkpointing is not handled properly.

2.2 WAR Dependencies
Memory consistency bugs may occur when intermittently executing an atomic region with WAR
dependencies [32, 62]. Such code patterns emerge when a nonvolatile memory location is first
read from and then written to. In the first partial execution, the program will execute as intended,
reading some initial value and then writing a new value to that memory location. After a power
failure and reboot, the execution will resume from the last checkpointed program point; the first
read of the memory location will return the value written by the previous execution, which may
be different from what the value would be if the program executes from the initial state, causing
incorrect program behavior.

To illustrate a WAR memory consistency bug, we consider an execution of the simple program
in Figure 1. It consists of two code blocks: the atomic region a1 declared with the Ckpt construct
(Lines 1–7 on the left of Figure 1) and a regular code block executed in JIT mode (Lines 8–14 on the
right). For now, we will focus our discussion on the atomic region, for this is where a WAR bug
may surface.

The program has four variables stored in nonvolatile memory: G , ~, and I of type int, and D of
type bool. For now, ignore the classification of these variables on Line 1. As shown in Figure 2(a),
a continuously powered execution of the atomic region with initial state G = 2, ~ = 0, I = 1, D = ff
ends in G = 2, ~ = 1, I = 1, D = tt.

Incorrect Atomic Region Execution. Consider the example intermittent execution of the same
program, shown in Figure 2(b). Suppose that no variables are checkpointed and that power fails
immediately after the execution of Line 5. Once the device recharges, the program execution
resumes from the start of the atomic region. If the system does not restore ~’s original value, this
re-run computes with the last saved state G = 2, ~ = 1, I = 1, D = tt, thus taking the wrong branch
and obtaining an incorrect result: G = 2, ~ = 2, I = 1, D = ff .

The intermittent execution in Figure 2 (b) suffers from insufficient variable checkpointing which
results in memory inconsistency. To ensure memory consistency, the intermittent system needs to
restore the values of certain nonvolatile locations upon reboot.

Proper Checkpointing. As EHDs are highly resource-constrained, the system should save state
judiciously; checkpointing all of nonvolatile memory is expensive and unnecessary. For example,
variables in an atomic region that are read-only (i.e., never updated) do not change value and need
not be checkpointed. Many intermittent systems follow this design of checkpointing all variables
that are not read-only [15, 19, 24, 28, 36, 54, 64]. Yet, prior work has shown that checkpointing only
the variables that are read from and then written to (called WAR variables) is enough to ensure
correct intermittent execution of atomic regions without inputs [59].

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

5:6 M. Dotzel et al.

Fig. 2. An example execution of a1 with WAR dependencies with no variables checkpointed. NV denotes the
nonvolatile memory. The subscript 8 indicates the memory after executing Line 8 .

2.3 Correct Atomic Region Execution
In this section, we show that checkpointing only the WAR variables is enough to ensure correct
execution of the atomic region in Figure 1. On Line 2 of Figure 1, the variable ~ is read from
and written to making it a WAR variable, and hence it is checkpointed, meaning that its initial
checkpointed value persists in nonvolatile memory. However, D does not need to be checkpointed
because it is always first written to before it is read, so the effects of previous partial executions on
D would have been overwritten by the time it is read. Following prior work [59], we call variables
like D must-first-write variables.

Each atomic region declares variables as read-only (read-only), must-first-write (MFstWt), or
checkpointed (ckpted), as seen on Line 1 of Figure 3. These annotations help our type system check
for memory consistency bugs caused by WAR patterns.

Given such a system, Figure 3 shows an execution of the atomic region in Figure 1. For now,
ignore the last three columns about typing. To save and restore state, the system follows redo-log
semantics. It records updates to checkpointed variables in a special volatile memory. This memory
clears if power fails, throwing out partial updates. Upon reaching the next atomic or JIT region, the
system commits the updates by copying them back to main memory.

Row (0) shows initial nonvolatile locations, their values, and the mapping between variables
and memory locations; locations ℓ1, ℓ2, ℓ3, and ℓ4 in the nonvolatile memory correspond to variables
G,~, I, and D, respectively. When starting to execute the atomic region (Row (1)), the system
checkpoints all WAR variables due to the checkpointing policy for atomic regions. In this example,
it takes a snapshot of ℓ2 and stores it in volatile memory. We mark the original nonvolatile location
as checkpointed with the superscript ck, i.e., ℓck

2 . Checkpointed location ℓck
2 remains untouched for

the remainder of the atomic region execution. Every access to variable ~ will instead be associated
with its volatile copy ℓ2, e.g., the assignment in Line 2 is applied to the volatile log of Row (2).
When the program executes Line 3, the system adds a new volatile memory location ℓ5 for variable
F on Line 3, corresponding to a volatile execution stack (Row (3)). On Line 5, the program stores
the assigned value tt to ℓ4, the memory location associated with D.

When power fails after Line 5, all volatile memory clears (Row (5)), throwing out the log. The
system shuts down until more energy is harvested, at which point the system regenerates the
volatile copy ℓ2 (Row (6)) and resumes execution from Line 2.

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

Modal Crash Types for WAR-Aware Intermittent Computing 5:7

Fig. 3. Intermittent execution of an atomic region. We write 8 for int and 1 for bool.

Rows (6–8) show successful execution of the atomic region. Upon re-execution, program exe-
cution proceeds as before, using the checkpointed value stored in ℓck

2 and values stored in ℓ1, ℓ3,
and ℓ4. The successful execution concludes at Row (8) where the value of ℓ2 in volatile memory is
committed to its location ℓck

2 in nonvolatile memory.

3 Key Ideas of Crash Types
We present the intuition behind the stable and unstable memory types (Section 3.1). Then, we intro-
duce crash types which internalize checkpointing, power failure/crash, restoration, re-execution,
and finalization of atomic regions (Section 3.2). Lastly, we discuss the independence principle
applied to intermittent computing (Section 3.3).

3.1 Modal Store Types
An unstable value is an intermediate result of a partial execution towards a stable value. Unstable
values are lost upon power failure, while stable values persist. If the result of a partial execution is
committed to a nonvolatile location, it will become stable and thus persist. To reflect the behavior
of a memory location in its type, we introduce two adjoint modalities ↑BD (read as “up shift from
unstable to stable”) and ↓BD (read as “down shift from stable to unstable”), where ↑BDgD indicates that

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

5:8 M. Dotzel et al.

the location stores a stable value of type g and ↓BDgB indicates that the location stores an intermediate
result of an execution toward a value of type g .

To fully capture the access patterns of memory locations by an intermittent execution, we also
annotate the type of a memory location with an access qualifier, RD, CK, or MFstWt, representing
whether the location is read-only, checkpointed, or must-first-write (must be first written on an
execution), respectively. Variables marked as MFstWt or RD do not need to be checkpointed. To
capture whether a MFstWt variable has been written to on the current execution, we introduce
the qualifier Wtn. By the end of an atomic region execution, all must-first-write variables must be
written. That is, all MFstWt qualifiers should become Wtn.

In our example in Figure 3, the read-only variables G and I are stored in nonvolatile memory,
so they have types G :↑BD 8@RD and I :↑BD 8@RD. The checkpointed variable ~ has type ~ck :↑BD
8@CK in nonvolatile memory, while ~’s volatile copy has type ~ :↓BD↑BD 8@CK. The variable F in
volatile memory also has unstable type F :↓BD↑BD 8@CK. The must-first-write variable D is also
stored in nonvolatile memory, so it has type D :↑BD 8@MFstWt. When it is written to on Line 5,
its type qualifier changes from MFstWt to Wtn (Row (4)). If the atomic region has not finished
executing before the crash, the restore system reverts all Wtn qualifiers back to MFstWt and
the system executes the atomic region from the beginning (Row (6)). We use the context Ω to
type nonvolatile memory and the context Σ to type volatile memory, as shown on the right side
of Figure 3.

3.2 Crash Types
To capture the effects of intermittent execution in the type of expressions and commands, we
introduce crash types, as the notion of stable and unstable values alone is insufficient. One might ex-
pect the expression G − ~ to have the type ↓BD↑BDint as it is a (partial) execution (↓BD) towards
computing a stable (↑BD) integer value. However, this type does not account for steps due to
power failure: the crash itself, waiting for the device to charge, restoration, and re-execution.
To reflect these runtime system steps at the type level, we assign the expression a type in the
form of a disjunction ? ∨ ↓BD↑BDint, where ? is a type for computations that handle power
failures. This type means that the expression either fails its execution, or succeeds and evalu-
ates to int. Next, we fill in ? for commands and expressions. ? is a recursive type because it
handles re-execution.

Commands. The crash type for commands is: Cunit = ↓BD (nat { ↑BD Cunit) ∨ ↓BD↑BDunit. The
right disjunct states that if no power failure occurs while executing a command, then it computes
a stable value of type unit which is committed to nonvolatile memory. The left disjunct states
that on power failure, the computation continues as a function; after a (logical) energy input is
received from the environment, the atomic region re-executes from the beginning, which is of stable
type (↑BDCunit).

Expressions. The crash type for expressions1 is: Catom
�

= ↓BD (nat { ↑BD Cunit) ∨ ↓BD↑BD�. As before,
the left disjunct represents power failure: If a logical energy input is received, the atomic region
will re-execute. Because atomic regions re-execute from the command enclosed in the region, we
use command type Cunit. The right disjunct types the stable value computed for the expression as
a basic type � (int or bool).

To type a program, we develop a type system for crash types. In the next section, we show the
structure of these typing rules and explain their relation to adjoint logic.

1For now, we can ignore the annotation atom in Catom
�

.

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

Modal Crash Types for WAR-Aware Intermittent Computing 5:9

3.3 Independence Principle for Typing Intermittent Execution
We design our typing rules to follow the rules for ↓BD and ↑BD modalities in adjoint logic [8, 53]. To
illustrate their connection, below we show skeletons of our typing rules with terms left as blanks
(_) to be filled in later.

We introduce two judgment categories. The first category (�B) is for deriving stable types and
corresponds to the judgments of the form Ω ` _ : gB , meaning that the rules can rely only on stable
locations to evaluate computation on a stable type. The second category (�D) is for deriving unstable
types and corresponds to the judgments of form Ω; Σ ` _ : gD , meaning that the rules can rely on
both stable (Ω) and unstable (Σ) locations to evaluate computation on an unstable type.

The adjoint modalities allow going back and forth between judgments �B and �D , mirroring
checkpointing and restoration operations. The following four rule skeletons show this back-and-
forth behavior in our type system.

Ω; · ` _ : gD

Ω ` _ : ↑BDgD
↑'

Ω, _ : ↑BD�D ; Σ, _ : ↓BD↑BD�D ` _ : gD

Ω, _ : ↑BD�D ; Σ ` _ : gD
↑!∗

Ω ` _ : gB

Ω; Σ ` _ : ↓BDgB
↓'

Ω, _ : ↑BD�D ; Σ ` _ : gD

Ω; Σ, _ : ↓BD↑BD�D ` _ : gD
↓!

Our typing rules are based on sequent calculus rules for adjoint logic [8, 48, 53]. Like sequent
calculus style rules, we read them bottom-up and match each execution step of a command with the
reading of a corresponding rule. Next, we will explain the switching between stable and unstable
modes of the above sequent calculus typing rules using the execution steps in Figure 3.

Shifts (Figure 3). A combination of the rules ↑' and ↑!∗ corresponds to creating a volatile log
from the nonvolatile locations when starting the atomic region, i.e., the step from Row (0) to Row
(1). The Row (0) type ↑BD Cunit and typing context Ω correspond to the conclusion of a ↑' rule:
Ω ` _ : ↑BD Cunit. An application of ↑' from bottom to top drops the ↑BD modality from the type of
the program and starts an empty typing context for the volatile memory region: Ω; · ` _ : Cunit.
Next, one application of ↑!∗ copies the variable ~ of type ↑BDint to the volatile memory typing
context Σ with the type ↓BD↑BDint. The same combination corresponds to creating a volatile log from
a nonvolatile location when restarting the atomic region: the step from Row (5) to Row (6), where
the variable ~ is copied to the volatile memory.

The ↓' rule corresponds to a power failure, which erases the volatile memory typing context
Σ. From Row (4) to Row (5) in Figure 3, the system loses the volatile locations of ~ and F and
closes off the volatile context. Row (4) corresponds to the conclusion of the rule, and Row (5)
corresponds to its premise. The type of the command in Row (4) changes from Cunit to ↓BD (nat {
↑BDCunit) (by a logical ∨-R rule as a crash is detected), and then to the type (nat { ↑BDCunit)
in Row (5).

Finally, a ↓! rule combined with a standard weakening rule and a ↓' rule corresponds to the
final commit of the volatile context: stepping from Row (7) to Row (8). There, the nonvolatile
context drops the location of ~ with type ↑BDint by a weakening rule since ~ in the nonvolatile
context maps to a location with an outdated value. Next, the up-to-date value stored in the volatile
location of ~ is committed to the nonvolatile location of ~ and thus ~ in the Σ context is com-
mitted to the Ω context by a ↓! rule. Then, a ↓' rule drops the remaining volatile context, which
contains F of type ↓BD↑BDint. The type of the command in Row (8) becomes ↑BDunit, signifying
that the system detects a successful execution. For the rest of the article, we denote ↓BD and ↑BD as
simply ↓ and ↑.

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

5:10 M. Dotzel et al.

Fig. 4. Summary of syntax.

4 A Basic Calculus for Intermittent Execution
In this section, we introduce the syntax and operational semantics of our basic calculus for inter-
mittent computing, with a focus on atomic region execution.

4.1 Syntax
The syntactic constructs in our language is summarized in Figure 4. Values include constants and
variables. Expressions include values and binary operations of expressions. Commands include skip,
mutable let bindings, if branching, assignments, and sequencing. A program, for now, is a sequence
of atomic regions. Atomic regions are denoted Ckpt[aID, d, `, l] (2) with a unique identifier aID,
read-only variables d , must-first-write variables `, checkpointed variables l , and an enclosed
command 2 .

Nonvolatile memory (NV) and volatile memory (V) map locations ℓ to values E , and each location
is annotated with its access mode @ (RD, CK, MFstWt, or Wtn). The nonvolatile memory location ℓck
is the checkpointed copy of location ℓ in volatile memory. The context W maps variable names to
memory locations. Access mode qualifiers in V and NV update throughout execution according to
certain constraints (to be discussed in Section 4.2).

The command 21;, 22 is a runtime instruction used for evaluating 21 under the execution context
, . The execution context, (written concretely as W | V) consists of volatile memory (V) state of
in-scope variables and a mapping from these variables to their memory locations (W).

To model energy harvesting from the environment, we assume a unique external energy channel,
Y, from which the system receives energy. Three crash instructions control the system in the event
of a power failure. For these, we use shifts ↓ to denote power failure and ↑ to denote re-execution.
The instruction ↓Y # in(1 > 0, ↑^) models the system that faces a power failure, where ^ is the
interrupted command or expression, and 1 > 0 is a guard to ensure that the bound incoming energy
variable 1 is positive. The instruction Y # in(1 > 0, ↑^) models the system awaiting an energy input
to be bound to 1. The instruction ↑^ models the system ready to restore memory and re-execute.

We write K> to denote an open system configuration, consisting of the mapping W , the mode
of execution Md (for now, just aID(2) for atomic regions), energy available for this execution 6,

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

Modal Crash Types for WAR-Aware Intermittent Computing 5:11

Fig. 5. Value configurations.

Fig. 6. Definition of the memory access transition function X .

memories, and the statement B to be executed. The energy level (·) models the state right after
power failure. We close an open configuration with [j Â Y]; we connect it via an external energy
channel Y to an infinite charging stream j of natural numbers, which models available energy the
configuration harvests from the environment at each power failure for re-execution.

4.2 Operational Semantics
The top-level operational semantic rule for evaluating a sequence of atomic regions is of the form
K2 ⇒? K′

2 ; the operational semantic rules for stepping commands and handling power failures
inside an atomic region are of the formK2 ⇒ K′

2 and rules for evaluating commands and expressions
under an open configuration where no power failure occurs are of the form K> → K′

> . We first
define several auxiliary definitions before explaining each set of the operational semantic rules.

Value Configurations. We call a configuration that cannot take a step a value configuration (value
for short), summarized in Figure 5. An open configuration is a value if the statement B under
evaluation is a constant or skip (the first four rules), the configuration of B has depleted all energy
for this execution (rule V-crash), or B is a crash instruction (rules V-↓,V-# in, and V-↑). The latter
two cases are values because they cannot take a step without interacting with the environment or
perform operations on the volatile and nonvolatile memory specific to handling power failures. A
closed configuration is a value only if the statement B is skip with some energy left (= > 0) (rule
V-p-done for programs and rule V-c-done for commands).

Memory Access Transition Function. To ensure appropriate memory accesses, we define a tran-
sition function X on the access qualifiers based on whether a step writes to (Wt) or reads from
(Rd) a memory location. This function is defined in Figure 6. Here, UN represents an undefined
or prohibited action which is caused by writing to a read-only location or reading from a must-
first-write location that has not yet been written. Writing (Wt) to a must-first-write location causes
the qualifier MFstWt to change to Wtn. Any subsequent write or read accesses of such locations
are allowed and the type qualifier remains Wtn. Similarly, write or read accesses of checkpointed
locations and read accesses of read-only locations are allowed and do not change the qualifier.

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

5:12 M. Dotzel et al.

Fig. 7. Operational semantic rule for atomic regions.

Fig. 8. Operational semantics for commands and crash instructions under a closed configuration.

Top-Level Program Execution (Closed Config). The D-P-Ckpt rule in Figure 7 executes the next
atomic region in a program. The nonvolatile (NV0) and volatile (V0) locations are initialized using
the InitWorld3 function, which takes as inputs: the current NV, declared read-only, must-first-
write, and checkpointed variables d , `, and l , and their mapping to locations W . The InitWorld3
function (a) changes the qualifier of locations in NV that are declared as read-only in d from CK
to RD, (b) changes the qualifier of locations in NV that are declared as must-first-write in ` from
CK to MFstWt, (c) checks that the rest of the locations in NV are declared as checkpointed in l

and maintains the qualifier CK for these locations, (d) creates V0 by copying the locations of NV
that have qualifier CK, and (e) marks the original version of the locations ℓ in NV that still have
qualifier CK as checkpointed (ℓck) to indicate that they now store checkpointed values. This part
corresponds to the step from Row (0) to Row (1) in Figure 3. The next premise evaluates the
closed configuration of 20 until completion, using the rules in Figure 8. This execution may undergo
several power failures and corresponds to the steps from Row (1) to Row (7) in Figure 3. Finally,
the FinWorld3 function closes off atomic regions, finalizing the volatile and nonvolatile locations.
FinWorld3 (a) copies the values of volatile locations in V′ that have a checkpointed version into
NV′ to commit the changes to these variables to nonvolatile memory, (b) removes the subscript
ck from the locations in NV′ and thus converts ℓck to ℓ to indicate that they now store up-to-date
values and not checkpointed values, and (c) replaces the RD, MFstWt, and Wtn qualifiers of the
locations in NV′ with CK to reset the access mode since they are out of the atomic region. This
corresponds to the step from Row (7) to Row (8) in Figure 3.

Command Execution (Closed Config). We summarize rules for a closed configuration in Figure 8.
Rule D-step steps the closed command configuration using the Figure 9 rules. When the energy
for this execution is depleted (i.e., = = 0), the D-Crash rule applies, stepping the system to the
crash instruction ↓Y # in(1 > 0;↑^). Upon a crash, D-S-aID applies and drops all volatile memory
locations. The D-charge rule steps the execution when a natural number = > 0 is received from

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

Modal Crash Types for WAR-Aware Intermittent Computing 5:13

Fig. 9. Operational semantics for command under an open configuration.

the energy channel. The number = represents the energy available for the re-execution. Finally, the
program is restored via D-restore-aID which copies checkpointed locations into volatile memory
to prepare for re-execution. D-restore-aID maintains the checkpointed locations NV′′

CK and starts
re-executing the original command 20 in the atomic region. Upon restore, all Wtn qualifiers are
reverted back to MFstWt, expressed as NV′′′

Wtn in the premise changing to NV′′′
MFstWt in the resulting

configuration.

Command/Expression Execution (Open Config). The rules for executing commands and expressions
in an open configuration are standard. We present them in Figures 9 and 10. Each step decrements
the energy level by one. The rules ensure that checkpointed location ℓck in NV is not read by the
program, as it could store outdated data, and is not written to, as this would tamper with the
checkpointed value.

The rule D-NV-Read looks up the value E stored in a location ℓ corresponding to variable G . The
premise @′ = X (@, RD) computes the resulting qualifier @′ from the original qualifier @ and updates
the access qualifier in nonvolatile memory accordingly. The rule D-Assign-NV applies when a
nonvolatile memory location ℓ is written to via assignment statements. If the computed qualifier @′

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

5:14 M. Dotzel et al.

Fig. 10. Operational semantics for expression under an open configuration.

is defined, the system replaces the value E ′ already in the location ℓ with 4 and updates the access
qualifier on ℓ from @ to @′.

The sequencing rules D-seq, D-seq-step, and D-seq-v use a runtime construct, that handles
the scoping of volatile locations. The rule D-seq steps 21; 22 to the scoped command 21;W |V 22 which
initializes the world with a mapping W and volatile memory state V. To ensure proper scoping, the
idea is to remember the original volatile memory V before evaluating the first command 21 of a
sequence 21; 22, and to revert the volatile state back to V when the execution of the first command
completes successfully. This removes any volatile locations allocated with let during the execution
of command 21. The rule D-seq-step preserves this world while evaluating the first command
21. To simplify the proofs, we assume that D-seq-step always applies to the leftmost sequence,
meaning that 21 is not of the form 2′;, 2′′. Finally, when 21 completely executes to skip, the D-seq-v
steps to 22 and only keeps those volatile locations that are declared in the original V′, and their
corresponding mapping W ′. The rule D-Let-v does not remove let-allocated location bindings as
this is handled by other parts of the system. If there is a command that follows, this scoping is
handled by the rules D-seq, D-seq-step, and D-seq-v as described above. If not, these locations
will be dropped at the end of the atomic block by the FinWorld function in the D-seq-step rule as
they are freshly introduced and do not have a checkpointed counterpart in nonvolatile memory.

Finally, we define the well-formedness conditions for configurations to constrain proper scoping
of memory locations in the presence of sequencing as follows.

Definition 4.1 (Well-Formedness for Configurations). We say that a configuration W | Md | = | NV |
V | 2 is well-formed iff when 2 = 21;,1 · · · ;,=−1 2= ;,=

2=+1 where = > 1, all of the following hold:

—3><(NVck) ⊆ 3><(V9) ⊆ 3><(V8) ⊆ 3><(V)
—W 9 ⊆ W8 ⊆ W

where 1 ≤ 8 < 9 ≤ = and,: = W: | V: for all : ∈ [1, =].

Definition 4.1 constrains configurations whose command is of the form 21;,1 · · · ;,=−1 2= ;,=
2=+1,

where,8 records volatile memory V8 and mappings W8 that are in scope for 28 . During execution,
volatile memory V grows monotonically except when stepping with D-seq-v which discards out-
of-scope variables, and the mapping W grows and shrinks accordingly. For this reason, the locations
of V8 (which was stashed in,8 prior to stepping to this configuration) should always be a subset

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

Modal Crash Types for WAR-Aware Intermittent Computing 5:15

Fig. 11. Types and typing contexts.

of the locations of V which contain in scope memory locations for the whole command, and
hence 3><(V8) ⊆ 3><(V). Similarly, 3><(V9) ⊆ 3><(V8) for 8 < 9 because D-seq-step always
applies to the leftmost sequence in a command and first executes the left part of the sequence.
As a result, the locations in V8 include newly allocated locations while executing the left part of
the sequence and the domain of V9 is a subset of the domain of V8 . The checkpointed locations in
nonvolatile memory NVck always have corresponding locations in volatile memory. The condition
3><(NVck) ⊆ 3><(V9) asserts that the checkpointed memory locations are never scoped out of
volatile memory. Lastly, the condition W 9 ⊆ W8 ⊆ W follows because the mappings W , W8 , and W 9 grow
and shrink with their respective memories V, V8 , and V9 . This well-formedness definition is used
to establish type preservation in Section 8.

5 Static Typing
In this section, we present the type system of our calculus. We begin with types and typing contexts,
and build up to typing judgments and static typing rules.

Types and Typing Contexts. The types are summarized in Figure 11. The modalities ↑ and ↓ stratify
types into stable (gB) and unstable (gD) layers and provide a mechanism for shifting between the
two (↑gD and ↓gB layers). Stable types (gB) are defined as ↑gD and nat { gB . The latter represents
the suspended computation waiting for energy from the environment. We consider nat { gB as a
stable type because its result is not susceptible to power failure. Unstable types (gD) are defined as
↓gB , type variables CMd

T , basic types) , and gD ∨ gD . The basic types int and bool are considered
unstable because the values, without being explicitly stored in nonvolatile memory, are transient.
A type variable CMd

T denotes a type in the set {Cunit, CMd
�
} and implements the recursive nature of

crash types. For now, we consider Md to be atomic mode (atom). We repeat the crash types below
which were introduced in Section 3.

command crash type Cunit = ↓(nat { ↑Cunit) ∨ ↓↑unit

expression crash type CMd
� = ↓(nat { ↑Cunit) ∨ ↓↑�

We include the connectives ∨ and{ solely for the purpose of defining crash types; they are not
used elsewhere. Defining crash types using these connectives will allow us to define the logical
relation in Section 6 based on the intended meaning of its index type. Some well-formed types,
e.g., nat { nat { ↑unit, are not accepted by our type system. No well-typed configuration is of
these types, so these types have no inhabitants.

A nonvolatile store typing context Ω assigns stable types (of form ↑�) to variables with locations
in nonvolatile memory. A volatile store typing context Σ assigns unstable types (of form ↓↑�)
to variables that have locations in volatile memory. We write Gck to refer to a variable with
checkpointed location and that has an active volatile log in Σ.

Typing Judgments. Table 1 summarizes all the typing judgments.

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

5:16 M. Dotzel et al.

Table 1. Typing Judgment Summary

Command (�D) Md | 1 R 0 : nat | Ω; Σ `Sig 2 :: Cunit a Ω′ 2 could crash
(�D) Md | 1 : nat | Ω; Σ `Sig skip :: ↓↑unit a Ω′ 2 will not crash
(�B) Md | 1 : nat | Ω `Sig skip :: ↑unit a Ω′ After commit

Expression (�D) Md | 1 R 0 : nat | Ω; Σ `RD;Sig 4 :: CMd
�

4 read, could crash
(�D) Md | 1 : nat | Ω; Σ `RD;Sig E :: ↓↑� 4 read no crash
(�B) Md | 1 : nat | Ω `RD E :: ↑� 4 read, commit
(�D) Md | 1 : nat | Ω; Σ `WT G :: ↓↑� Write on G , no crash
(�B) Md | 1 : nat | Ω `WT G :: ↑� Write on G , commit

Program (�B) Md | 1 : nat | Ω ` ? :: ↑Cunit Before execution
Crash (�D) Md | 1 = 0 : nat | Ω; Σ `Sig ^ :: CMd

)
About to crash

(�D) Md | · | Ω; Σ `Sig ↓Y # in(1 > 0, ↑^) :: ↓(nat { ↑CMd
T) Crash state

(�B) Md | · | Ω `Sig Y # in(1 > 0, ↑^) :: nat { ↑CMd
T Waiting for energy

(�B) Md | 1 > 0 : nat | Ω `Sig ↑^ :: ↑CMd
T Before re-execution

Judgments are also stratified into two varieties, those that derive a stable type (�B) and those
that derive an unstable type (�D). Unstable judgments �D have both nonvolatile and volatile store
typing contexts which type the state during an unstable computation. Alternatively, �B judgments
include only the nonvolatile typing context because these type stable command state. The structure
of our unstable and stable typing judgments help guarantee that the independence principle for
intermittent execution is upheld: Values in volatile memory should not influence those in the
nonvolatile memory unless a stable state is reached.

The unstable and stable typing judgments are parameterized over the execution mode Md of the
expression or command to be typed. The judgment also tracks a variable 1 corresponding to the
current energy level of this execution. 1 ranges over natural numbers (nat) and is constrained
by a relation R ∈ {≥, >} or is set to zero. When the constraint is 1 ≥ 0, 1 is effectively uncon-
strained. The constraint on 1 determines whether or not a command can evaluate a value without
power failure.

The command judgments use a signature context Sig, which stores the typing judgments for
the original command of the Ckpt block such that when typing commands restored from a power
failure, the signature is used to check that the restored command typing matches the one stored in
the signature without needing to derive it again. This is similar to typing recursive functions, and
the signature makes the typing derivations finitary and inductive. There are three judgments for
command typing. The first judgment is used when the command has not yet successfully finished
executing; its next step, depending on its constraint R, may or may not crash. The second judgment
types commands with type ↓↑unit. In this judgment, 1 no longer needs to be constrained because
this judgment only types commands that have succeeded completing the execution. This judgment
invokes the third judgment and uses it as a sub-derivation-tree to type the configuration after the
volatile log is committed. The post-context Ω′ is the nonvolatile context Ω with updated access
qualifiers after execution of the command 2 .

The expressions that are being written to are only of the simple form G . As no execution is
required to evaluate G , we consider the operation atomic so its judgment is crash-free, and hence
no constraint is required on 1. Unlike commands, expression typing judgments do not carry post-
contexts because writes, and hence qualifier updates, occur at the command level and not at the
expression level. The labels RD and WT indicate read and write accesses in a program. The static
type checking compares these labels to variable access qualifiers in the typing contexts to ensure
proper memory accesses of variables.

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

Modal Crash Types for WAR-Aware Intermittent Computing 5:17

Fig. 12. Program typing.

For program typing, we only have one judgment that refers to the type of the program before
the execution of its next block starts.

The rest of the judgments type states after a crash. The first judgment has the constraint 1 = 0,
which corresponds to the power failure condition. It invokes the second judgment, which types a
state right after a crash.The third judgment types the state awaiting energy to continue re-execution,
and the final judgment types the state that is ready for restoration and re-execution.

Program Typing. In Figure 12, the T-P-Ckpt rule types the command 20 enclosed in an atomic
region under the mode aID(20) and then types the rest of the program ? .

The first premise sets up the initial typing contexts for nonvolatile and volatile memories. The
partial function InitWorldC initializes the volatile typing context Σ0 by creating a log of variables in
the nonvolatile typing context Ω that are checkpointed. Ω can be uniquely split into Ω2 , Ω< , and
ΩA , where ΩA is the set of all read-only locations in Ω, Ω< is the set of all must-first-write locations
in Ω, and Ω2 is the set of all locations that are checkpointed. To formally define this function, we
use the following notations.

We write Ω � C to denote the subset of Ω whose domain includes all the locations in the set C .
We define Ωck to be the same mapping as Ω except that a subscript ck is added to all the variable
in the domain of Ωck. This is used to generate typing context for checkpointed locations. We define
↓Ω to be the context resulting from adding a ↓ in front of each type that variables in the domain of
Ω are mapped to. This definition is used to generating a typing context for the volatile log used for
the checkpointed locations. They are formally defined below:

Ωck = {Gck :↑�@@ | G :↑�@@ ∈ Ω} ↓Ω = {G :↓↑�@@ | G :↑�@@ ∈ Ω}.
Next, we define the InitWorldC function as follows.

Definition 5.1. Ω0 | Σ0 = InitWorldC (Ω; d ; `;l) iff

—dom(Ω) = d ∪ ` ∪ l ,
—d ∩ ` = ∅, ` ∩ l = ∅, d ∩ l = ∅,
—Ω0 = ΩA ,Ω<,Ω2

ck, and
—Σ0 = ↓Ω2 ,

where Ω = ΩA ,Ω<,Ω2 and ΩA = Ω�d , Ω< = Ω�`, and Ω2 = Ω�l .

If the sets of read-only, must-first-write, and checkpointed variables, d , `, and l , do not comprise
the domain of Ω or are not pairwise disjoint, then the function InitWorldC is not defined and
type-checking fails.

After constructing the new typing contexts using InitWorld, the rule T-P-Ckpt uses the signature
to remember that the atomic region’s original command 20 is typed under memory contexts Ω0; Σ0.
The region is then typed relative to the signature. The nonvolatile post-context Ω′ contains updated
qualifiers from executing the command 20. In particular, the post-context helps us check that all
must-first-write variables in an atomic region are written by the end of its execution, as guaranteed
by the second to last premise Ω′�{MFstWt} = ∅. The last premise checks the remainder of the
program ? with the original typing context Ω, implicitly resetting the qualifiers to CK for the next
program segment.

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

5:18 M. Dotzel et al.

Fig. 13. Command typing.

Command Typing. The typing rules for commands are presented in Figure 13. The T-Skip rule
types the command skip at the stable type ↑unit. At this point, the command execution is complete
and the initial nonvolatile context Ω should match the final nonvolatile context. Rule T-∨-Succ
applies when the command successfully completes its execution and still has at least one unit of
energy available (1 > 0) to conclude the execution by committing. In this case, we close off the
constraint on the energy level variable and continue typing the command against the type ↓↑ unit.
Rule T-C-Shift is invoked by T-∨-Succ and updates the memory typing contexts by removing
checkpointed locations in Ω as now they are not needed, and making locations in Σ stable as now
they are committed. This corresponds to the last step of Figure 3. The post-context Ω1�3><(Ω)
discards any variables from Ω1 that do not occur in Ω. In other words, this operation updates the
variables in the post-context from Ω by considering Ω1 and discarding variables that appear in the
volatile context Σ′ that are not checkpointed in Ω ensuring that the domain of the post-context
matches Ω.

The rules T-Let and T-Assign are mostly standard except that we consider crashes. For example,
in typing the command G := 4 , the first premise of T-Assign considers the type of expression 4 to
be the crash type CMd

�
, since the evaluation of 4 could crash. The constraint on the energy levels

for this premise is 1 ≥ 0, as we use one energy unit to deconstruct the assignment command. The
second premise types the location G to be of type ↓↑� because the assignment only occurs when 4

completes evaluation.

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

Modal Crash Types for WAR-Aware Intermittent Computing 5:19

Fig. 14. Expression typing.

In the rule T-If, the first premise checks that expression 4 has type CMd
bool, and the second and

third premises type the commands 21 and 22. Both branches should end with memories whose
variables have the same qualifiers. Programs that have branching that causes variables to have
different qualifiers are rejected by the type system. For example, consider a branching program with
a must-first-write variable that is written in one branch but not the other. At the end of the branch,
the qualifiers in each post-context are inconsistent. Even if that variable is written immediately
after the branch, our type system will reject this program. This is one limitation of our type system.

The rule T-seq types the command 21; 22 by first typing 21 and then typing 22. Starting with the
initial nonvolatile context Ω, the typing of 21 yields the intermediary context Ω′ with updated
qualifiers by executing 21. In the second premise, Ω′ acts as the initial nonvolatile context for typing
22 which produces the final context Ω′′.

The rule T-seq-d applies to the runtime sequencing command where an extra context, = W | V
keeping track of the scoping of volatile locations is used. The premise Σ′ = trim(Σ,V, W) trims
the volatile typing context to remove let variables scoped within 21 and match the scoped volatile
memory V and mapping W . The trimmed context Σ′ is the original context for typing the second
command 22.

The rule T-enough? cases on 1 ≥ 0 and considers two cases: 1 = 0 (the first premise) where
the execution crashes and 1 > 0 (the second premise) where there is at least one unit of energy
available to decompose a command construct, e.g., T-Let or T-Assign.

Expression Typing. Expression typing rules are very similar to those of the commands and they
are shown in Figure 14. The T-Loc-Write and T-Loc-Read rules match the location variable G with
an existing variable inside the context. T-Loc-Write updates the qualifier of G to reflect that it has
been written according to the semantics of X , implicitly checking that G is not a read-only variable.
Note that in the case where a location in volatile memory is being written, the post-context matches
the pre-context because the qualifier of G remains Ck. The T-W-Shift rule is similar to T-C-Shift
but considers the variable G at type ↓↑� under an unstable typing judgment in the conclusion, and

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

5:20 M. Dotzel et al.

Fig. 15. Crash, restore, and checkpoint typing.

at ↑� under a stable typing judgment in the premise. The post-context Ω1 � 3><(Ω) only keeps
variables of Ω1 that occur in Ω, and discards variables in the post-context of the premise Ω1 if they
correspond to variables in Σ′. In T-W-Shift and T-C-Shift, Ω1�3><(Ω) ensures that the domain
of the pre- and post-contexts of a judgment always match, and they only differ on the qualifiers
associated with the variables in their domains.

Statement Typing. The typing rules for crash instructions are presented in Figure 15. A crash
is detected by the depleted energy level 1 = 0 in the T-∨-crash rule. In the premise, the crash
instruction ↓Y # in(1 > 0, ↑^′) is typed. The T-aID-stop rule simply drops the volatile locations
in Σ. The T-Charge rule inputs a new energy level from the energy channel Y. The first premise
shows that the energy channel is needed to provide a natural number greater than zero. Finally, the
T-aID-Restore rule prepares for re-execution; volatile memory is restored from the checkpointed
locations in Ω. The checkpointed locations persist in Ω as we may need them if there is another
power failure. Execution continues with the original command 20 enclosed in the atomic region.
Instead of retyping the restored judgments, we check if there are already typing derivations by
matching them up with the saved judgment in the signature.

5.1 Store Typing
We present the well-formedness definitions (Figure 16) to ensure the runtime stores NV and V are
well-typed with respect to typing contexts Ω and Σ. The rule V-loc checks a volatile location’s type
with respect to Σ and W . The rule NV-loc-aID-1 checks non-checkpointed locations in nonvolatile
memory by checking that the value stored in the location ℓ allocated for G has the same type as G .
The rule NV-loc-aID-2 applies when G has a checkpointed value stored in NV and an up-to-date
value stored in the log in V. In this case, the rule ensures that these two values have the same
type. Allowing for volatile memory V and the volatile typing context Σ to be ·, these rules also
define well-formedness of NV with respect to Ω which arises when configurations only contain
nonvolatile memory.

6 Logical Relation for Intermittent Execution
To prove the correctness of an intermittent execution, we need to show that there exists a corre-
sponding continuous execution that results in the same final nonvolatile memory after an arbitrary
number of crashes (idempotency) [59, 60]. In this section, we define a logical relation for relating
intermittent and continuously powered executions of a single atomic region. We use the logical
relation to introduce a semantic typing for programs consisting of atomic regions. Later, in Section 8,

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

Modal Crash Types for WAR-Aware Intermittent Computing 5:21

Fig. 16. Well-formedness of NV | V w.r.t. Ω | Σ.

we show that statically well-typed programs are semantically well-typed and that our semantic
typing ensures idempotency.

6.1 Semantic Typing via a Logical Relation
We define a binary logical relation for crash types that relates an intermittent execution with a
continuously powered execution for a single atomic region. Since crash types are recursive, we rely
on step-indexing to ensure the well-foundedness of the definitions. The step index is the maximum
number of executions that an observer would allow for the intermittent execution. Similar to
prior work [2, 22, 61], our definition consists of a term relation EÈCunitÉ< and a value relation
VÈgÉ< , which relate an open configuration with at most< attempts for executing the region to an
open configuration with continuous power. The value relation requires the intermittently executed
configuration to be a value configuration.

The logical relation is constructed in such a way that two related configurations will result
in the same nonvolatile memories upon completing evaluation of the command, which captures
the idempotency requirements. The term and value logical relations are inductively defined over
a lexicographic induction on the index< and the structure of the types. Our logical relation is
presented in Figure 17.

Auxiliary Definitions. Before explaining details of our logical relation, we define notations and
policies used in its definition.

We write K∞
> to denote an open configuration with an infinite energy level: They are of the form

(W | Md | ∞ | NV | V | 2). Such configuration is used to model a continuously powered execution.
We write K> →∗

irred K
′
> to mean that K> evaluates to an irreducible configuration K′

> which cannot
take any more steps. Since our semantics for commands is deterministic, for each configuration K>

there is exactly one such irreducible configuration. An irreducible configuration might not be a
value but rather an ill-typed configuration that cannot take any more steps. Syntactic typing, by
enabling a proof of progress and preservation, ensures that an irreducible configuration can only be
a value configuration as defined in Figure 5. However, our logical relation does not assume syntactic
typing of configurations. Instead, by defining a value relation for each type, the logical relation
ensures that an irreducible configuration reachable from a semantically well-typed program is
indeed a value configuration.

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

5:22 M. Dotzel et al.

Fig. 17. Step-indexed logical relation for crash types.

We write NV \ {MFstWt} to denote the resulting memory after removing all locations with the
qualifier MFstWt from NV.

To account for the power failure, recovery, and finalizing atomic regions’ effects on memory, the
logical relation relies on PwOff, Restore, and Commit policies, referred to as power failure, restore,
and commit policies, respectively. We formally define these policies in Figure 18. The definitions
match the memory operations in the dynamic rules that deal with crash, restore, and re-execution
(D-S-aID, D-restore-aID, and D-P-Ckpt) for atomic regions, though they can be generalized as
we will discuss in Sections 7 and 9.

In Figure 18, the commit policy is defined to capture the effects of finalizing the nonvolatile
memory after a successful atomic region execution. The commit policy copies the values of the
checkpointed volatile memory locations into the nonvolatile memory and changes the qualifiers
of all other locations in the nonvolatile memory to ck. Formally: Commit(W, aID(20),NV1,V1) =
W ′ | NV′

1 ck,V′′, where NV1 = NV′
1 RD,Wtn,MFstWt,NV′′

ck and V1 = V′
1,V′′ and dom(V′′) = dom(NV′′).

Additionally, we have that the original map W covers the committed map W ′ (W ′ ⊆ W) and that the
locations mapped to by W ′ comprise the locations of NV1, i.e., range(W ′) = 3><(NV1).

The restore policy describes the effect of setting up the memories for re-executing an atomic
region. The restore policy is defined as Restore(W, aID(20),NV1, ^) = NV′

RD,MFstWt,NV′′
ck,NV3

MFstWt |

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

Modal Crash Types for WAR-Aware Intermittent Computing 5:23

Fig. 18. Commit, Restore, and PwOff policy definitions for atomic regions.

NV′′ | 2 where NV1 = NV′
RD,MFstWt,NV′′

ck,NV3
Wtn, marking all locations with the qualifier Wtn with

MFstWt; these locations hold dirty values that will be rewritten on the next execution before they
can be read.

Finally, we define a power off policy to state the effect of the system in the event of a power
failure. Because atomic regions already checkpoint the necessary locations before they begin
executing, the PwOff policy here is defined to lose the volatile memory state upon power failure,
i.e., PwOff(W, aID(20),NV1,V1) = W ′ | ∅, where W ′ is the largest restriction of W with range(W ′) =
dom(NV1).

Now we are ready to explain our term and value relations.

Term Relation. A pair of open command configurations of type Cunit are in the term relation
of index< if any intermittent execution of the first configuration after< observed executions
is indistinguishable from a continuous execution of the second configuration. In the base case
where the index is< = 0, no execution is observed, so any two configurations are in the term
relation. In the inductive case where the index is< + 1, the term relation relates two configurations
at type Cunit if the first configuration eventually steps to a value configuration and the second
configuration can take zero or more steps such that the pair continues to be in the value relation of
VÈCunitÉ<+1.

Value Relation. The value relation is defined based on the intended meaning of the type, and
relates two value configurations that will have the same effect on the stores.

The first two rules omit the index< because the types ↓↑unit and ↑unit are not recursive and
thus no index is needed. The value relation at type ↑unit relates two configurations that have
finalized their executions and thus requires they have the same nonvolatile memories NV. The
value relation at type ↓↑unit relates two configurations that have completed their executions and
right before they commit their changes to nonvolatile memory and requires that the commands in
both configurations be skip and that after committing changes to their nonvolatile memory, the
configurations be related at type ↑unit. In other words, this requires these two configurations to
have the same effect on nonvolatile memory.

The value relations in the last four rows of Figure 17 are defined based on the type of the first
configuration, as it goes through power failure, charging, and recovery, characteristic of intermittent
execution. However, the second configurations in these relations do not encounter power failures
at all and continue to be of type Cunit. Only in the relations defined in the first and second rows
of the Figure 17 term relation do the types of both configurations match the indexed type of the
relation. Hence, the value relation has varying arity: In the first and second rows of Figure 17, the
relation is binary while in the rest, the relation degenerates to unary, with the second configuration
as its Kripke world [27].

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

5:24 M. Dotzel et al.

Each definition relates a configuration with a crash instruction to a continuously powered
execution. It includes conditions on the store that quantify the effects of the partial execution, crash,
or recovery, so that these three rules together require that previous partial execution, crashes,
and recovery have no impact to the final nonvolatile memory compared to the continuously
powered execution and at the same time, allow unharmful effects of the partial execution. Because
the structure of the crash type enforces that power failure, charging, and recovery happens in
sequence, each definition applies effects of its own crash instruction and then hands off the resulting
configuration to the previous definition.

The value relation at type ↑Cunit requires that the intermittent configuration runs the crash
instruction ↑^ , which restores a continuation of the execution. The restored configuration continues
to be related to the continuously powered configuration in the term interpretation at its original
type Cunit. The constraint NV0 \ {MFstWt} = NV2 \ {MFstWt} requires that the intermittent
memory is the same as the continuously powered one, modulo must-first-writes. This constraint
is necessary because after a partial execution of an atomic region, memory may be updated in
its written variables. This means that the memory of the intermittently powered configuration
may differ from the continuously powered configuration in those locations with the qualifier Wtn.
The restore policy for atomic regions resets the qualifier Wtn of these locations to MFstWt. Thus,
at this point, the value of locations with qualifier MFstWt may differ between the intermittently
powered and continuously powered configurations. Such differences, however, do not violate the
idempotency of the intermittent execution; in the next execution, these variables will not be read
from before being rewritten, and if the next execution succeeds, these variables will be rewritten.

The value relation at type (nat { ↑Cunit) requires the intermittent configuration to run an
instruction for charging the energy. It is defined similarly to a function type in a value relation and
requires the configurations to be related at type (↑Cunit) for every energy input level = provided to
the first configuration.

The value relation at type ↓(nat { ↑Cunit) relates two configurations if the first one runs the
crash instruction ↓Y # in(= > 0, ↑^) which processes the power failure. The power failure policy
creates a checkpoint of volatile locations such that the configurations continue to be in the value
relation at type (nat { ↑Cunit).

Finally, the value relation relates two open command configurations at type Cunit and index
< + 1 if either (a) the first configuration has faced a power failure, and the two configurations
continue to relate by VÈ↓(nat { ↑Cunit)É< , or (b) the first configuration executed successfully
without any power failures, and the two configurations are related by VÈ↓↑unitÉ. This definition
matches the disjunctive nature of type Cunit, which is recursively defined in the signature as
↓(nat { ↑Cunit) ∨ ↓↑unit. Since we unfold the recursive definition of Cunit, we decrease the
index from< + 1 to< to ensure the relation’s well-foundedness. Note that the value relation is
neither defined nor used by other definitions for Cunit at index 0.

Semantic Typing. The top-level logical relation is written Md | 1 ≥ 0 : nat | Ω | Σ � 21 ≤ 22 : Cunit
stating that each intermittent execution of 21 yields the same nonvolatile memory as a continuously
powered execution of 22, if it begins execution with well-formed memories w.r.t. Ω and Σ (see
Figure 17).

We formalize semantic typing as every atomic region of the program being logically related to
itself. The rule P-Ckpt-semantic says that a program is semantically well-typed if every atomic
region of it is self-related under our logical relation.

Ω0 | Σ0 = InitWorldC (Ω; d ; `;l)
aID(20) | 1 ≥ 0 : nat | Ω0 | Σ0 � 20 ≤ 20 : Cunit 1 : nat | Ω � ? : ↑Cunit

1 : nat | Ω � Ckpt[aID, d, `, l] (20); ? : ↑Cunit
(P-Ckpt-semantic)

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

Modal Crash Types for WAR-Aware Intermittent Computing 5:25

Self-relatedness of a block helps us to build a continuously powered execution for each inter-
mittent execution of it as required for idempotency. We give the precise theorem and proof that a
program comprised of only self-related blocks is idempotent in Section 8.

The P-Ckpt-semantic rule allows us to reason about programs by considering each code block
independently. We can extend this approach to accommodate other code blocks in a program. In
the next section, we extend the system to accommodate JIT blocks and explain how to compose
them with atomic regions in programs.

7 JIT Region Execution
Up until this point, we have focused our discussion entirely on atomic regions. In this section, we
extend the system we have developed thus far to also include JIT regions, written 2;? , where 2 is
the JIT region and ? is the rest of the program. We also add the jit mode to the execution mode,
which is used to index our operational semantics and typing rules. Below, we give the full syntax
of programs and execution modes extended to accommodate JIT programs:

progs ? ::= Ckpt[aID, d, `, l] (2);? | 2;? | skip
exec. mode Md ::= aID(2) | jit

In Section 7.1, we explain the example JIT region from Figure 1. In Section 7.2, we extend the
calculus from above with operational semantic rules for executing JIT regions. Sections 7.3 and 7.4
introduce types and typing rules specific to JIT mode. In Section 7.5, we revisit the semantic typing
and logical relation considering the JIT mode.

7.1 Example
Unlike atomic regions, JIT regions are not susceptible to WAR bugs because they do not re-execute.
Instead, all volatile state is checkpointed in nonvolatile memory just before a power failure so that
upon reboot, program execution resumes from the line of failure. Due to this, variable annotations
are not needed in the program syntax of JIT regions, for all writeable variables are checkpointed
in JIT mode. As a result, all variables in a JIT block are annotated with the qualifier CK. Figure 19
shows the details of executing the JIT region from the second half of Figure 1 (repeated in the left
column).

Row (0) shows the initial nonvolatile locations, their values, and the mapping from variables to
locations. The system starts executing the JIT region by creating an empty context to be populated
by volatile locations (Row (1)). The let construct in Line 8 allocates a fresh location ℓ5 in volatile
memory and updates the mapping to associate variableF to ℓ5. On a power failure in JIT mode, the
system creates a nonvolatile copy of the volatile location ℓ5 just before it loses the location (Row
(3)). It marks the nonvolatile copy with the superscript ck. When resuming program execution,
the system restores these copies to volatile memory which it accesses during execution instead of
their nonvolatile backups (Row (4)). Execution then continues with the if clause on Lines 9–12,
finally dropping the volatile location ℓ5, as it is out of scope (Row (5)).

Shifts in JIT Mode (Figure 19): Below, we recall the typing rule skeletons from Section 3 and use
them to build the typing contexts in Figure 19.

Ω; · ` _ : gD

Ω ` _ : ↑BDgD
↑'

Ω, _ : ↑BD�D ; Σ, _ : ↓BD↑BD�D ` _ : gD

Ω, _ : ↑BD�D ; Σ ` _ : gD
↑!∗

Ω ` _ : gB

Ω; Σ ` _ : ↓BDgB
↓'

Ω, _ : ↑BD�D ; Σ ` _ : gD

Ω; Σ, _ : ↓BD↑BD�D ` _ : gD
↓!

The process of constructing typing contexts for JIT regions is the same as for atomic regions.
However, all variables in JIT regions are checkpointed, and thus, the resulting typing contexts

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

5:26 M. Dotzel et al.

Fig. 19. Intermittent execution of a JIT region. We write 8 for int and 1 for bool.

differ from those for atomic regions even when typing the same commands. In Figure 19, we create
an empty volatile context Σ when starting the JIT region (the step from Row (0) to Row (1)) by an
application of the ↑' rule. A combination of the rules ↓! and ↓' corresponds to a power failure, i.e.,
the stepping from Row (2) to Row (3) in Figure 19. An application of the ↓! rule copies the variable
F of type ↓BD↑BD1 in Figure 19 from volatile memory context Σ into nonvolatile memory context Ω.
A ↓' rule closes off the (empty) nonvolatile memory context. As in atomic mode, a combination of
↑' and ↑!∗ rules corresponds to creating a volatile log from a nonvolatile location when restarting
the command after the failure, i.e., the step from Row (3) to Row (4). The ↑' rule prepares for
re-execution by setting up an empty volatile context into which the ↑!∗ rule copies variableF from
the nonvolatile context. We assume an extra weakening rule to eliminate the remaining variableF
in nonvolatile memory context. The dropping of volatile memory context at the end of execution
(Row (5)) is not a modal step, but rather follows from a standard rule for the let clause. Lastly, an
application of ↓' drops the volatile typing context and produces the stable type ↑BDunit, detecting
a successful execution.

7.2 Operational Semantics
The operational semantic rules for evaluating JIT regions are of the same forms as those for atomic
regions: K2 ⇒? K′

2 (program level), K2 ⇒ K′
2 (command level), and K> → K′

> (expression level).

Top-Level Program Execution. The top-level semantic rule for stepping a JIT program is shown in
Figure 20.

The D-P-seq rule applies when the next code block is a regular command 2 . The closed configu-
ration of 2 with an empty initial set of volatile locations is fully evaluated in JIT mode. In Figure 19,
we use the rule D-P-seq to set up an initially empty volatile context to begin executing the JIT

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

Modal Crash Types for WAR-Aware Intermittent Computing 5:27

Fig. 20. Operational semantic rule for JIT regions.

Fig. 21. Operational semantics for crash instructions under a closed configuration (JIT mode).

Fig. 22. Crash types for both JIT and atomic mode.

region (the step from Row (0) to Row (1)), and to step the JIT region (from Row (1) to Row (5))
according to the third premise. Then the resulting volatile locations V′ scoped in 2 are dropped
because in JIT mode the nonvolatile memory always stores up-to-date values and V′ only contains
out-of-scope let variables. This corresponds to the step from Row (5) to Row (6) in Figure 19. The
constraint = > 0 checks that there is energy available for the first code block to take a step, and
=′ > 0 checks that the first code block finishes executing successfully and is not in the midst of a
power failure.

Having both rules D-P-Seq and D-P-Ckpt allows running programs with both JIT and atomic
regions, and the combination of rules T-P-Seq and T-P-Ckpt allows us to statically check them.

Command Execution (Closed Config). We give the rules for a closed configuration in JIT mode
in Figure 21. The rule D-S-Jit corresponds to checkpointing, and stores all volatile memory in
nonvolatile locations. The rule D-restore-Jit moves the checkpointed locations into volatile
memory, thereby dropping the checkpointed locations from the scope of the nonvolatile memory.
D-restore-Jit recovers the interrupted command ^ for the program to resume execution.

7.3 Static Typing
We extend the type system to accommodate JIT regions by introducing crash types and typing
rules for JIT mode, summarized in Figure 22.

Crash Types. We begin by extending the definition of type variables CMd
)

. Because the mode has
been extended to accommodate both atomic regions and JIT regions, we replace the single type
variable CMd

�
with a type variable for each mode: Catom

�
and Cjit

�
. The definition of crash type for

commands in JIT mode (Cunit) is the same as for atomic mode, where the right disjunct represents
successful execution and the left disjunct represents a power failure. To capture the JIT policy, the
type Cunit in the left disjunct represents the same command that was interrupted by the power
failure. The definition of expression crash type for JIT mode (Cjit

�
) is similar to the one for atomic

mode (Catom
�

), where the right disjunct types a successful execution and the left disjunct represents
power failure. However, the type ↑Cjit

�
in the left disjunct captures the JIT recovery policy, that an

interrupted run of an expression in JIT mode will be restored to the expression itself.

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

5:28 M. Dotzel et al.

Program Typing. To type JIT programs, we extend our type system with the rule T-P-seq. The
T-P-seq rule types program 2; ? by first typing 2 under JIT mode with 1 ≥ 0, which allows for
the possibility of power failure. The command 2 is typed under an empty volatile memory typing
context, which will be populated when let commands in 2 allocate new volatile locations. The
signature Sig for typing 2 is also empty and is populated later at individual points of failure (rule
T-enough?). Note that the rule T-P-seq does not need additional constraints on the post-context
Ω′ because the access qualifiers never change when running a command 2 in JIT mode. The second
premise types the rest of the program ? under the initial nonvolatile typing context Ω.

jit | 1 ≥ 0 : nat | Ω; · `∅ 2 : Cunit a Ω′ 1 : nat | Ω ` ? : ↑Cunit

1 : nat | Ω ` 2;? : ↑Cunit
(T-P-seq)

Command and Expression Typing. We extend the command and expression typing rules to
accommodate JIT mode which just entails updating our T-enough? rules for commands and
expressions (shown in Figure 23).

We update the T-enough? rule for commands to populate the appropriate signature Sig′′. The
second premise states that the signature remains the same if the mode is atomic, but is populated by
Sig′ if the mode is JIT. In JIT mode, after a power failure, the command 2 is restored to itself, and
Sig′ remembers that the well-typedness of the command (when the energy level is non-negative)
has already been checked. The T-enough? rule for expressions is similar, but is used to remember
the well-typedness of an expression in case of a power failure.

Statement Typing. The typing rules for crash instructions specific to JIT mode are shown in
Figure 24. The T-Jit-stop rule brings a checkpointed version of all the volatile variables in Σ inside
Ω since they are checkpointed upon power failure. Once an energy input is received from the
environment (1 > 0), the rule T-Jit-Restore applies to type the restored command. Here, volatile
memory is restored from the checkpointed locations in Ω. Checkpoints are dropped from Ω and
execution resumes with the expression or command ^, which is the code running right before the
power failure.

7.4 Store Typing
We present the store typing rules for JIT mode in Figure 25: Empty for checking empty stores,
V-loc-Jit for checking volatile locations, and NV-loc-Jit for checking nonvolatile locations. The
rule V-loc-Jit is similar to the volatile store typing rule for atomic mode. The rule checks that the
volatile location ℓ has the qualifier CK, and that the type of the value E stored in ℓ matches the type
of the corresponding variable G in the volatile typing context Σ. The first premise recursively checks
the rest of the volatile store. The rule NV-loc-Jit checks a nonvolatile location ℓ by ensuring that
the variable G , for which ℓ is allocated, has the same type in Ω as the value E stored in ℓ and that
the qualifier @ = CK. The rule then recursively checks the rest of the store. The generalized store
typing rules for both JIT and atomic modes are presented in Appendix A.

7.5 Logical Relation
Our logical relation from Section 6.1 is designed to reason about JIT regions too, but with different
policies. We provide policy definitions for JIT mode in Figure 26. The policies are defined to match
the dynamic rules for crash, restore, and re-execution for JIT execution (D-S-Jit, D-restore-Jit,
and D-P-seq).

The commit policy for JIT mode simply drops all volatile memory and changes the qualifiers of
all locations in nonvolatile memory to ck. In particular, Commit(W, jit,NV1,V1) = W ′ | NV1

ck,NV2
ck,

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

Modal Crash Types for WAR-Aware Intermittent Computing 5:29

Fig. 23. T-Enough? rules for commands and expressions, extended to JIT mode.

Fig. 24. Restore and checkpoint typing in JIT mode.

Fig. 25. Well-formedness of NV | V w.r.t. Ω | Σ in JIT mode.

Fig. 26. Commit, Restore, and PwOff policy definitions for JIT mode.

and NV1 = NV1
RD,NV2

ck. Additionally, the original map W covers the committed map W ′ (W ′ ⊆ W),
and the locations mapped to by W ′ comprise the locations of NV1 (range(W ′) = 3><(NV1)).

The restore policy for JIT mode is defined as Restore(W, jit,NV1, ^) = NV′ | NV′′ | ^ where
NV1 = NV′,NV′′

ck. We write NV1 = NV′,NV′′
ck to state that NV1 can be uniquely partitioned into

all locations that are checkpointed (NV′′
ck), which are of the form ℓck, and regular locations (NV′)

of the form ℓ . NV′′ is the non-checkpointed version of NV′′
ck which could be retrieved by removing

the ck subscript from every location in NV′′
ck.

Lastly, the power failure policy is defined to checkpoint all volatile locations in JIT mode, i.e.,
PwOff(W, jit,NV1,V1) = W | V1.

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

5:30 M. Dotzel et al.

Semantic Typing. Lastly, we extend our semantic typing definition to accommodate JIT regions
too. We do so with the rule P-seq-semantic which says that a program of the form 2;? is seman-
tically well-typed if the JIT block 2 is self-related under the logical relation and if the remaining
program ? is semantically well-typed.

jit | 1 ≥ 0 : nat | Ω | · � 2 ≤ 2 : Cunit 1 : nat | Ω � ? : ↑Cunit

1 : nat | Ω � 2;? : ↑Cunit
(P-seq-semantic)

For programs composed of a combination of JIT and atomic regions, the semantic typing rules
P-seq-semantic and P-Ckpt-semantic indicate that a program is semantically well-typed if every
program block (JIT and atomic region) of it is self-related under our logical relation.

8 Metatheory
This section establishes the main properties of our system: progress and preservation, adequacy—
which states that intermittent executions of semantically well-typed programs are correct—and
the fundamental theorem of logical relation which states that statically well-typed programs are
semantically well-typed. Combining the latter two, it follows that statically well-typed programs
can be correctly executed intermittently. The detailed proofs of these theorems are provided in
Appendices B–E.

8.1 Statically Well-Typed Programs Are Type Safe
We prove type safety according to progress and preservation. The progress and preservation
theorems assume that memory locations are well-formed, `Md

W NV | V : Ω | Σ. The progress theorem
(formally defined below) states that if a command 2 is well-typed, then for all energy levels = and
well-formed memories NV and V, either the configuration of 2 is a value configuration or it can
take a step according to the operational semantics.

Theorem 8.1 (Progress for Commands). If Md | 1 R < : nat | Ω; Σ `Sig 2 : g a Ω′, then ∀
= : nat with = R < and ∀W,NV,V with `Md

W NV | V : Ω | Σ, either

—+0; (W | Md | = | NV | V | 2) or
—∃(W ′ | Md′ | =′ | NV′ | V′ | 2′) s.t. W | Md | = | NV | V | 2 → W ′ | Md′ | =′ | NV′ | V′ | 2′.

Here,< = 0 and the configuration’s concrete energy level = instantiates energy variable 1 in the
typing judgment. The energy level decrements with each command step until the configuration
of 2 is a value where = > 0 (indicating a successful execution), or until = = 0 (indicating a crash)
which our semantics also considers a value. The constraint = R < in the theorem ensures that
the concrete energy level = preserves the relation of 1 with< as required by typing. Note that
this progress theorem does not ensure that a given program will always make enough progress to
complete the execution, because sufficient energy may not be available.

The preservation theorem for commands is formally defined below.

Theorem 8.2 (Preservation for Commands). If Md | 1 ≥ 0 : =0C | Ω; Σ `Sig 2 : g a Ω′

where

(1) W | Md | = | NV | V | 2 is well-formed,
(2) `Md

W NV | V : Ω | Σ,
(3) natural number = ≥ 0, and
(4) W | Md | = | NV | V | 2 → W ′ | Md | =′ | NV′ | V′ | 2′

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

Modal Crash Types for WAR-Aware Intermittent Computing 5:31

then for some Ω0, Σ
′, Md | 1 ≥ 0 : =0C | Ω0; Σ′ `Sig 2

′ : g a Ω′ where

(5) W ′ | Md | =′ | NV′ | V′ | 2′ is well-formed,
(6) `Md

W ′ NV′ | V′ : Ω0 | Σ′,
(7) natural number =′ ≥ 0,
(8) if Md = aID(20), then NV′ \ {MFstWt, Wtn} = NV \ {MFstWt, Wtn},
(9) 3><(NV) = 3><(NV′), and
(10) Ω > Ω0.

Theorem 8.2 states that if 2 is a syntactically well-typed command, whose configuration
W | Md | = | NV | V | 2 is well-formed (1) for well-formed memories NV and V (2) and non-
negative natural number = (3), steps to another configuration W ′ | Md | =′ | NV′ | V′ | 2′ (4),
then 2′ is also syntactically well-typed. Additionally, the stepped configuration is well-formed (5),
the memories NV′ and V′ are well-formed (6), and =′ is a nonnegative natural number (7). Since
an arbitrary command step could write to memory, we also prove that the initial and resulting
memories are the same excluding their must-first-write and written memory locations for the mode
aID(20) (8). As another key invariant, we prove that no new nonvolatile memory locations can be
introduced with a given step, meaning that they can only be updated (9). Theorem 8.2 obligation
(10) enforces that the qualifiers of the variables in contexts Ω0 and Ω are within one X transition of
each other and is defined below in Definition 8.3.

Definition 8.3. Ω > Ω′ iff ∀G :g@@ ∈ , we have G :g@@′ ∈ Ω′ where @′ ≠ *# and either @ = @′ or
X (@,, C) = @′.

8.2 Statically Well-Typed Programs Are Semantically Well-Typed
We prove the soundness of our static typing rules with regard to the semantic typing rules
(Theorem 8.4). We sketch the proof below and provide the full proof in Appendix C.

Theorem 8.4 (Fundamental Theorem). If1 : nat | Ω ` ? : ↑Cunit, then1 : nat | Ω � ? : ↑Cunit.

The proof of Theorem 8.4 is by induction on the static typing derivation for ? and considers the
last step in the derivation. Here, we sketch the proof for the case where D-P-Ckpt is the last step
of the derivation. For the complete proof of Theorem 8.4, see the appendix. By inversion on the
D-P-Ckpt rule, we get ? = Ckpt[aID, d, `, l] (2);?′. Also, 2 is well-typed for static contexts Ω and
Σ, where Ω = Ω′′, Σck.

The goal is to establish that 2 is related to itself in the term interpretation for arbitrary =,<, W ,
NV, and V where `Md

W NV | V : Ω′′, Σck | Σ. This means that we need to prove (W | aID(2) | = |
NV | V | 2,W | aID(2) | ∞ | NV | V | 2) ∈ EÈCunitÉ< for all indices< given that the condition
`Md
W NV | V : Ω | Σ holds. The last condition enforces that the static contexts match the dynamic
context. In particular, NV = NV′,Vck and range(W) = dom(NV).

We prove a generalized version of this goal in the main proof of Theorem 8.4. In particular, we
prove that a well-typed command 2 is related to itself for any two nonvolatile memories NV1 and
NV2 that agree on every value of their locations except those with must-first-write qualifiers. The
goal is to show (W | aID(2) | = | NV1 | V | 2,W | aID(2) | ∞ | NV2 | V | 2) ∈ EÈCunitÉ< where (a)
range(W) = dom(NV1), (b) NV1 \MFstWt = NV2 \MFstWt, and (c) NV1 = NV1 \Wtn. The condition
(a) asserts that W covers the locations in the nonvolatile memory NV1. The condition (b) enforces
that the nonvolatile memories NV1 and NV2 be related up to their MFstWt qualifiers. Lastly, the
condition (c) asserts that the intermittent nonvolatile memory NV1 does not have any Wtn variables
at the beginning of executing an atomic region.

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

5:32 M. Dotzel et al.

Fig. 27. Proof of the fundamental theorem for D-P-Ckpt (inductive case).

Proving this generalized result is crucial to building the simulation because even though the
initial configuration of the continuously powered execution W | aID(2) | ∞ | NV2 | V | 2 matches
the initial configuration of the intermittent execution, the intermediate configurations of the
continuously powered execution are not necessarily the same as their intermittent counterparts,
yet they are still related (for example, point (6) in Figure 27). In particular, the configurations are
the same except for their nonvolatile memories which are equivalent up to their MFstWt locations,
as enforced by condition (b) in Figure 27. We discuss how to establish this relation in the inductive
case explanation below.

Command 2 being self-related is a special case of this generalized goal where the nonvolatile
memories are the same (NV1 = NV2 = NV) and are well-formed with respect to the context
initialized by inversion on the D-P-Ckpt rule. Observe that the three conditions required by the
inductive hypothesis hold in this special case: (a) A0=64 (W) = dom(NV) holds as described above,
(b) NV \ MFstWt = NV \ MFstWt holds vacuously, and (c) NV1 = NV1 \ Wtn is true due to the
definitions of InitWorld and well-formedness.

We then proceed to prove the generalized result mentioned above by induction on the index<.

Base Case. For< = 0, the logical relation in Figure 17 relates any two configurations with the
index zero; and thus, the base case immediately follows from the term interpretation at type Cunit.

Inductive Case. We now discuss the inductive case where < = : + 1 in Figure 27. The green
conditions (d)–(g) are learned throughout the proof, and (a)–(c) are known by assumption. The
places where these conditions are used in the proof are marked on the right hand side of the
diagram. The dashed lines represent implications. For example, to prove point (1), it suffices to
establish point (2) which follows by the term interpretation at type Cunit. To prove point (2), it is
enough to prove point (3), and so on. The proof continues unfolding the logical relation in this
manner until point (6) is reached. Point (6) states that 2 is self-related by the term interpretation at
type Cunit but at the smaller index : . By establishing the appropriate conditions, we can apply the

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

Modal Crash Types for WAR-Aware Intermittent Computing 5:33

inductive hypothesis to establish the desired result. This is the high-level proof strategy, and we
provide more detail in the explanation below.

Our goal is to prove (W | aID(2) | = | NV1 | V | 2,W | aID(2) | ∞ | NV2 | V | 2) ∈
EÈCunitÉ:+1 which corresponds to point (1) in Figure 27 with assumptions (a)–(c). By the progress
and preservation theorems (Theorems 8.1 and 8.2), the first configuration can take multiple steps
until it becomes a value W1 | aID(2) | =′ | NV′ | V′ | 21 that continues to be well-typed. If =′ > 0,
the second configuration steps similarly to completion and establishes that the two resulting
configurations are in the value relation. This case is omitted from Figure 27. If =′ = 0, the second
configuration does not step and instead reaches point (2) in Figure 27. At point (2), the proof must
show that the configurations are in the value interpretation at type Cunit.

The cascade of implications (dashed lines) follows the definition of the value relations at each
type (marked in purple). At each step, we invert on the typing rule of the open configuration and
show that runtime memories stay well-defined for static contexts.

At point (4), we apply the power failure policy for atomic regions, which drops the volatile
memory V′ and creates a mapping using the domain of NV′. By the prior conditions established,
we know the created mapping is the original mapping W .

At point (6), we apply the restore policy for atomic regions, which creates a new volatile memory
based on NV′ and marks all written memory locations in NV′ as must-first-write. By the semantics
of the restore function, we know the volatile memory created is the original volatile memory V
containing only checkpointed locations.

The goal at point (6) is similar to our original goal at point (1) but at the smaller index : . We
can apply the inductive hypothesis to establish the goal at point (6). To do so, it is enough to show
that conditions (a)–(c) hold at this point. First, (a) holds by the original condition (a) combined
with (f) and the definition of NV′ given by (g). The condition (b) holds by combining the original
condition (b) with (c), (e), and the observation that NV′, sans the locations marked MFstWt and
Wtn, is the same as the final intermittent nonvolatile memory, sans the locations marked MFstWt.
(c) continues to be true for each subsequent execution due to the semantics of the restore function
which replaces all Wtn qualifiers in nonvolatile memory with MFstWt.

8.3 Semantically Well-Typed Programs Are Idempotent
A program is idempotent if every intermittent execution of it can be simulated by a continuous
execution. Definition 8.5 defines this property formally.

Definition 8.5 (Idempotency). A triple of a program ? , nonvolatile memory NV, and a mapping W
is idempotent, if every intermittent execution of the program can be simulated by a continuous
execution of it: For all =, =′, j1, j ′1,NV′, ?′, if [j1ÂY] ⊗W | = | NV | ? ⇒? [j ′1ÂY] ⊗W | =′ | NV′ | ?′,
then [j2 Â Y] ⊗ W | ∞ | NV | ? ⇒? [j2 Â Y] ⊗ W | ∞ | NV′ | ?′.

When showing that a program ? with memory NV and mapping W is idempotent, we construct
a simulation of the continuous execution assuming that it begins with the same program code
? and memory NV as the intermittent execution. We use the logical relation from Section 6 to
enforce that the stepped configurations are related in the same way; they share the same program
code ?′ and memory NV′. The charge stream j2 remains unchanged between the initial and final
configurations as the continuous execution does not experience power failures.

Theorem 8.6 states that semantically well-typed programs are idempotent. In the theorem, we
use the store typing judgment for the jit mode to ensure the well-formedness of NV with respect to
a typing context Ω. This reflects the fact that the programs start executing in jit mode by default.

Theorem 8.6 (Adeqacy). Consider 1 : nat | Ω � ? : Cunit, a nonvolatile memory NV, and a
map W such that `jit

W NV | · : Ω | ·. The triple of ? , NV, and W is idempotent.

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

5:34 M. Dotzel et al.

The proof builds the simulation required by idempotency using induction on the number of
power failures during each step of a program’s intermittent execution. The construction of this
simulation (and proof) is illustrated below. See Appendix D for the complete proof of Theorem 8.6.

Executing an Atomic Region. Assume that 21 is self-related and that the configuration [j1ÂY]⊗W1 |
aID | = | NV1 | Ckpt[aID, d, `, l] (21);? takes a step to [j: Â Y] ⊗ W | aID | =′ | NV′ | ?
via the rule D-P-Ckpt while incurring possibly <-many power failures. We need to show that
there exists a continuously powered execution of the same program that steps the configuration
[j Â Y] ⊗ W1 | aID | ∞ | NV1 | Ckpt[aID, d, `, l] (21);? to [j Â Y] ⊗ W | aID | ∞ | NV′ | ? . Our
proof constructs such continuously powered execution.

The proof assumes that program Ckpt[aID, d, `, l] (21);? is semantically well-typed. Applying
P-Ckpt-semantic, we learn that the command 21 is semantically well-typed and self-related at type
Cunit. By the definition of logical relation (Figure 17), it follows that the intermittent configuration
of 21 with energy level = is related to the continuously powered configuration of 21 with energy
level ∞ at the type Cunit for every index, including< + 1. We use this relation to build the desired
simulation. Towards this goal, we prove a more general result: For any two related configurations,
if the first configuration takes zero or more steps, then the second configuration takes zero or more
steps such that the two stepped configurations remain related. By definition of our relation, both
configurations result in the same final nonvolatile memories.

The proof is by induction on the number of power failures<. Figure 28 also shows the inductive
case (Lines (1)–(6)) and the base case (Lines (7)–(9)) for the case of an atomic region. Starting
with index< + 1 (point (1) in Figure 28), we build a continuously powered execution for 21 while
showing that the intermediate configurations continue to relate to their intermittent counterparts at
a smaller index< (point (6) in Figure 28). At that point, we apply the inductive hypothesis to obtain
the desired result. Finally, the base case establishes that the memories of the final configurations
are the same.

Inductive Case. By definition of the term interpretation at type Cunit, 21 in the first configuration
runs via D-step until the next power failure. Moreover, it follows by the term interpretation at type
Cunit that the second configuration can also be executed such that the resulting configurations
remain related (point (2)). The first configuration takes a step from point (2) to point (3) with
the rule D-Crash. Since the energy level of the first configuration is 0, it follows by the value
interpretation at type Cunit that these two configurations are related by the value interpretation
at type ↓(nat ↑Cunit) (point (3)). Using the rule D-S-aID, the first configuration takes a step
from point (3) to point (4). The volatile memory V′

1 is dropped, and hence V′ = ∅. Note that this
matches the power off policy for atomic mode. By assumption to D-S-aID, the mapping W ′′1 drops
the discarded volatile memory locations from W ′1 such that W ′′1 ⊆ W ′1. The two configurations remain
related by the value interpretation at type nat ↑Cunit (point (4)). The first configuration then
takes another step to point (5) by D-Charge, inputting the harvested energy =0, thus updating the
energy stream to j ′1 where j1 = =0 :: j ′1. By definition of the value relation, the two configurations
remain related at the type ↑Cunit for all =0 (point (5)).

From point (5) to point (6), the first configuration steps via D-restore-aID. In doing so, it
replaces all Wtn qualifiers in the nonvolatile memory NV′

1,V′ with MFstWt in NV0 and loads the
checkpointed data of the nonvolatile memory into the volatile memory V0. As such, the program
counter resets to its original value, and the atomic region re-executes from the beginning such that
20 = 21. The variable mapping stays the same (W0 = W ′′1). Note that this matches the restore policy
for atomic mode. The two configurations are then related by the term interpretation at the type
Cunit. This is similar to what we had initially but with one fewer power failure remaining. At this
point, we apply the inductive hypothesis to build the simulation at the index<.

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

Modal Crash Types for WAR-Aware Intermittent Computing 5:35

Fig. 28. Illustration of related configurations evaluating to the same store. We include the trace of the
intermittent execution (left) and build the corresponding continuous execution (right). The purple text shows
the relation between the two configurations at each step according to our logical relation. The orange box
highlights the steps taken during a power failure. The green box highlights where the inductive hypothesis is
applied. The red box highlights the base case. The blue text gives conditions that are known by assumption or
are learned during the proof.

Base Case. When the first configuration finally steps to completion by the D-step rule (point (8)
in Figure 28), it follows by the definition of logical relation that the second configuration also steps
to skip thus detecting a successfully completed execution. This completes the simulation of the
continuous execution of 21. Here, we can apply the rule D-P-Ckpt on this construction to obtain a
continuously powered execution of the program Ckpt[aID, d, `, l] (21); ? . The FinWorld3 function
copies the up-to-date values of volatile memory V′

:
that have checkpointed locations back into

nonvolatile memory NV′
:
, removes the subscript ck from these locations, and changes the qualifiers

of all locations in nonvolatile memory to CK. The volatile memory is dropped and the mapping is
reset to W . This matches the commit policy defined for atomic mode. By the value interpretation at
type ↓↑unit, the two configurations remain related at the type ↑unit (Line (9)). Then, by the value
interpretation at type ↑unit, the final nonvolatile memories are the same (NV′

:
,V′′

:
= NV′

9 ,V′′
9)

which is the last piece we needed.
For the special case where 22 = 21, NV2 = NV1, and V2 = V1, we can apply the rule D-P-Ckpt to

the constructed execution to find a continuously powered execution of Ckpt[aID, d, `, l] (21);? as
desired: [jÂY] ⊗W1 | aID | ∞ | NV1 | Ckpt[aID, d, `, l] (21);? ⇒? [jÂY] ⊗ W | aID | ∞ | NV′ | ? .

Executing a JIT Block. Assume that 21 is self-related, and [j1 Â Y] ⊗ W1 | jit | = | NV1 | 21;? takes
a step to [j: Â Y] ⊗ W | jit | =′ | NV′ | ? via the D-P-seq rule with possibly<-many power failures

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

5:36 M. Dotzel et al.

along the way. We need to show that there exists a continuously powered execution stepping the
configuration [j Â Y] ⊗ W1 | jit | ∞ | NV1 | 21; ? to [j Â Y] ⊗ W | jit | ∞ | NV′ | ? . Our proof
constructs such continuously powered execution.

The overall proof structure is the same as the case for atomic regions. Similarly, the key idea is
that the power off and restore policies in the logical relation exactly follow how the rules D-S-JIT
and D-restore-JIT handle nonvolatile and volatile memories in the operational semantics.

The proof assumes that 21; ? is semantically well-typed, which by P-seq-semantic, yields that 21
is semantically well-typed and self-related at type Cunit. By definition of logical relation (Figure 17),
if 21 is semantically well-typed, then its intermittent configuration with energy level = is related
with the same configuration but with energy level ∞ for every index, including< + 1. We use
this condition to obtain the desired result. In particular, we prove a more general goal stating that
for any two related configurations, if the first configuration takes zero or more steps, then the
second configuration can take zero or more steps such that the stepped configurations remain
related. Moreover, in both configurations, the final nonvolatile memories at the end of the JIT block
execution will store the same values.

The proof is by induction on the number of power failures< until the first configuration succeeds.
Figure 28 shows the inductive case (Lines (1)–(6)) and the base case (Lines (7)–(9)). Starting with
index< + 1 (point (1) in Figure 28), we show that the intermediate configurations continue to relate
at a smaller index<. Then, we apply the inductive hypothesis to obtain the desired result. Finally,
in the base case, we show that the memories of the two final configurations are the same.

Inductive Case. By definition of the term relation, 21 in the first configuration is executed via
D-step until the next power failure occurs, which is detected by a 0 energy level. Moreover, by
the term relation at type Cunit, we can execute 22 in the second configuration to 2′2 such that the
resulting configurations remain related by the value relation at type Cunit (point (2) in Figure 28).

The orange box around Lines (3)–(5) highlights the steps taken when handling a power failure.
Each step corresponds to one of the key operations crash, power off, restore, and re-execute. Since
power failures are incurred by intermittent executions, we step the first configuration according
to the corresponding rules in the operational semantics, but do not step the second configuration
through this sequence. Here, the first configuration takes a step from point (2) to point (3) using
the D-Crash rule. By the definition of the logical relation, the two configurations continue to be
related by the value interpretation at type ↓(nat {↑ Cunit). Then, the first configuration takes
a step from point (3) to point (4) by the D-S-Jit rule. In this case, we know (by the assumptions
of the rule) that V′ = V′

1 and W ′′1 = W ′1. This matches the definition of the power-off policy for
JIT blocks (see Section 6.1, Figure 18). By the value interpretation at type ↓(nat {↑ Cunit), the
two configurations remain related by the value relation at type nat {↑ Cunit. Next, the first
configuration takes a step to point (5) by the rule D-charge which inputs a new energy level (=0)
from the environment and updates the energy stream from j1 to j ′1 where j1 = =0 :: j ′1. By the
definition of the value relation, the two configurations remain related by the value interpretation
at type ↑ Cunit.

Finally, the configuration steps to point (6) by D-restore-Jit which copies all checkpointed
locations in the nonvolatile memory into volatile memory and continues by running the interrupted
command 2′1. That is, V0 = V′ and 20 = 2′1, and the nonvolatile memory and variable mapping
remain the same (NV0 = NV′

1 and W0 = W ′′1). This matches the restore policy defined for JIT
regions. Thus, the configurations continue to be related by the term relation at type Cunit, similar
to what we had earlier at point (1) in Figure 28, but with fewer power failures remaining. At this
point, we apply the inductive hypothesis (highlighted by a green box in Figure 28) to build the
continuous execution.

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

Modal Crash Types for WAR-Aware Intermittent Computing 5:37

Base Case. The red box in Figure 28 highlights the base case. Since the index is 1, there are 0
remaining power failures. So, =′

:
> 0 and the first configuration steps to completion via the D-step

rule. By the definition of the value interpretation, we know that the second configuration also
steps to skip indicating a complete execution. This completes the construction of the continuous
execution for 21. The volatile memory V′

9 is dropped, and the mapping is reset to W . This matches
the commit policy defined for JIT blocks.

Note that the value interpretation at type ↓↑unit establishes that the two configurations remain
related at the type ↑unit (Line (9)). The commit policy drops the volatile memories V′

:
and V′

9

such that V′′
:
= V′′

9 = ∅. Finally, by the value interpretation at type ↑unit, we get that the final
nonvolatile memories are the same (NV′

9 ,V′′
9 = NV′

:
,V′′

:
) which completes the proof.

In the special case, where the initial configurations are the same, we have that 22 = 21, NV2 = NV1,
and V2 = V1. Here, we can apply the D-P-seq rule to the construction to obtain a continuous exe-
cution for the program 21;? as desired: [j Â Y] ⊗ W1 | jit | ∞ | NV1 | 21; ? ⇒? [j Â Y] ⊗ W | jit |
∞ | NV′ | ? .

9 More General Policies
So far, we have only considered programs consisting of atomic and JIT regions. In this section, we
show how to accommodate other kinds of intermittent execution models beyond atomic and JIT
regions by utilizing our semantic typing to allow custom policies for power failure, restore, and
commit. We generalize the grammar of programs as follows:

? := · | Reg[aID,−−→0A6] (2);?
−−→0A6 refers to the arguments that the programmer decides to pass to the region for initialization.

To each region, we assign a unique identifier aID that is associated with the three policies and
two functions InitGeneralC and InitGeneral3 to initialize the static and dynamic memories,
respectively. We add the following semantic typing rule for the general regions:

20 | Ω0 | Σ0 = InitGeneralC (Ω; (aID;−−→0A6); 2;)
aID(20) | 1 ≥ 0 : nat | Ω0; Σ0 � 20 ≤ 20 : Cunit 1 : nat | Ω � ? : ↑Cunit

1 : nat | Ω � Reg[aID,−−→0A6] (2); ? : ↑Cunit
(P-Reg-semantic)

For a self-related region to be idempotent, the policies for power failure, restore, and commit in
the logical relation must match the policies in the dynamics. To achieve this, we add the dynamic
rules for custom regions in Figure 29 using the same custom policies Commit, PwOff, and Restore
used in the logical relation. The JIT and atomic region policies and their dynamic rules are instances
of these general policies.

With the custom policies, the logical relation accepts more programs than our type system. For
example, consider an atomic region with the code “if I thenG := 1 else skip.” This piece of code
writes the variable G in one branch but not the other. Our type system only accepts the program
if G is checkpointed. Otherwise, if G is declared as a MFstWt, the post-states of typing the two
branches will not be the same and the type system rejects it. If the qualifier of G is MFstWt initially,
it will be Wtn at the end of the first branch but remain MFstWt after the second branch. However,
a programmer can customize the checkpointing policy of this block to not checkpoint variable
G , and the program remains semantically well-typed and thus idempotent. The intermittent and
continuous executions of this block will always take the same branch and result in the same
nonvolatile memories at the end of execution because the value of I does not change in different

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

5:38 M. Dotzel et al.

Fig. 29. Custom dynamic rules.

re-executions. However, because the intermittent and continuously powered executions of this
region always execute the same branch, it is self-related and thus semantically well-typed.

To accept such programs statically, other type systems [60] implement a conservative merge
(making their’s less conservative than our type system) that reconciles the differences in post-
state between the two branches. Implementing this merge in our type system would not change
the logical relation. The policy we have investigated in this work, which checkpoints only WAR
variables, is implemented by real systems [32, 34, 59].

10 Related Work
Intermittent Computing. Prior work on designing runtime systems for intermittent computing [34,

52, 62] relied on informal notions of correctness. This left systems susceptible to two classes of
memory consistency bugs which result from reading computations from partial executions [32]
or allowing stale sensor readings from prior executions to persist in nonvolatile memory [57].
Surbatovich et al. [59] provide the first formal framework for reasoning about intermittent execution,
give the correctness definition that we use, and identify precise memory invariants needed for
an execution to be correct. Our crash types capture the invariant that WAR variables need to be
checkpointed; however, we do not reason about the effect of non-deterministic sensor inputs and
leave it to future work.

Curricle developed an information flow type system for checking and inferring which variables
in an intermittent program are idempotent or non-idempotent, and reasoning about correctness
as an analog to non-interference by asserting that non-idempotent data and power failures do
not influence idempotent data [60]. Variable types are annotated with (1) idempotence qualifiers
that have interior access mode qualifiers which correspond to the qualifiers in our work and (2)
taintedness qualifiers for tracking whether a computation is dependent on an input operation. This
tracking allows their type system to detect another class of memory consistency bugs caused by
access patterns that involve input dependencies. Their work, while also type-based, focuses on
reasoning about these access mode qualifiers whereas our work reasons about the key operations
of intermittent computation.

Other works that investigate the formal properties of intermittent computing either reason about
the effects of intermittent execution on peripheral interactions [9] or enforce timeliness constraints
on sensor readings [58], which are orthogonal to ours.

Persistent Memory. Other works study fault tolerance with respect to different memory models.
Notably, persistentmemorymodels rely solely on nonvolatile memory to perform a computation [14,
33, 38, 63]. Work in this area builds persistent memory interfaces that constrain write orders for
executing concurrent [42, 43] or parallel [11] programs. Our work reasons about sequential program
execution on processors with both volatile and nonvolatile memories.

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

Modal Crash Types for WAR-Aware Intermittent Computing 5:39

Weak persistency semantics formalizes the behavior of programs running under persistency
models for specific processors [49–51]. They prove their systems are correct according to persistent
linearizability, which characterizes the correctness of concurrent program execution according
to write orders [20, 25]. Our formalism is at a higher level than theirs, not considering specific
processors. To our knowledge, our work is the first to characterize the logical interaction between
volatile and nonvolatile memories.

Adjoint Logic. Benton et al. [7, 8] provided the first categorical foundation for using adjoint
functors to combine linear and nonlinear logics and showed that a well-behaved calculus requires an
independence principle: Linear formulae cannot appear in the assumptions of a nonlinear sequent.
Follow-up works further generalized the system [29, 30, 53]. There, the relation to Pfenning and
Davies’s [44] formulation of the lax © modality was noted; © corresponds to UF, where F and U
are adjunctions between truth and validity categories. Short of a full Curry-Howard correspondence
for our type system and underlying logic, we designed the rules for ↑ and ↓ based on the above
calculi. Our stable and unstable contexts correspond to the validity and truth contexts, respectively.
Thus, we speculate that the combination ↑↓ in our system corresponds to the lax modality.

Several prior works used type systems with adjoint modalities to model switching between
program modes [6, 18, 48], e.g., switching a process’s mode between shared and unshared [6],
or adding multicasting, replicable services, and cancelation modes to a session-typed message
passing system [48]. We are the first to use these modalities to handle unforeseen shut-downs and
distinguish between stable and power-failure prone modes.

Logical Relations. Prior work [3, 61] uses step indexing to ensure the well-foundedness of logical
relations that handle heaps with cyclic references, dynamic memory allocation, or recursive types.
Our crash types model the infinite computation that an atomic region can experience under a
non-deterministic number of power failures and re-executions. This recursion necessitates an
indexed relation that limits the number of execution attempts a program can make.

Jung and Tiuryn introduced a logical relation for lambda definability that allows varying ari-
ties [27]. The idea is to increase the arity when passing to later worlds instead of starting with a
large arity. Our logical relation can also be viewed as a relation with different arities; the initial
type of the relation is binary, while after a crash the type of the value relation only corresponds to
the intermittent configuration. During these value steps, the relation is unary, with the continuous
configuration acting as a Kripke world for the intermittent configuration. After restoration, the
relation reverts to binary.

Logical relations have been widely used to prove program equivalence, e.g., [2, 3, 10, 22]. At a
high level, idempotency is similar to program equivalence, but it handles re-execution and requires
us only to prove simulation from an intermittent to continuous run, not vice-versa.

Algebraic Effect Handlers. Algebraic effect handlers [37, 45–47] give a unified theory for compu-
tational effects, e.g., exceptions and interactive input/output. A handler accesses the continuation
to transform the computation. Following effect handler syntax, we write effectful environmental
interactions of our system as Y#in(1 > 0, ↑^), where 1 refers to a natural number returned by the
environment and ↑^ is the continuation. Our restore policy resembles a handler, in that it has
access to the continuation, but an atomic region may dismiss the continuation, restarting from a
saved command.

Crash Consistency. The failure and recovery patterns this article observes for intermittent com-
puting are similar to those of file systems. Verifying the correctness of file system operation under
crashes is also an important task [26] of which several works have studied [12, 13, 23, 41, 55, 56].

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

5:40 M. Dotzel et al.

Notably, Bornholt et al. [12] develop crash-consistency models, similar to memory consistency
models, to characterize the failure and recovery behaviors of file systems across crashes. Their
framework Ferrite can be used to verify formal specifications of file systems by both exhaus-
tively executing litmus tests against all possible crash behaviors and symbolically executing litmus
tests against a specification. Their memory model is similar to ours, considering both volatile and
nonvolatile state, and providing rules that define the interaction between these memories in the
presence of a crash. Like idempotence for intermittent computing, the notion of correctness for
crash-consistency models relates a crashy (intermittent) trace of a program to its canonical (con-
tinuously powered) trace. Our work provides formal proofs that automatically verify idempotence
once and for all programs in our language.

Crash Hoare Logic (CHL) [13] ensures the correctness of crash and restore operations in a
file system. CHL extends Hoare logic with a crash condition and a recovery procedure. The crash
condition states what happens to the state on a crash. The recovery procedure runs after the crash
and manipulates the state before resuming. The system checks that if the program crashes, the
storage system will recover to a state consistent with the specifications. Unlike us, they do not
consider idempotency, requiring manual effort to formalize the crash condition and recovery policy.
Our syntactic typing fixes the power failure, restore, and commit policies, and our formal results
guarantee that following the policies ensures idempotency, the common correctness condition
for intermittent execution. We also allow the programmer to formalize bespoke semantically
well-typed policies.

11 Discussion and Future Work
In this section, we discuss assumptions and limitations of our current system and highlight potential
directions for future work.

Language Features. Our calculus models a simple imperative language, which is based on con-
structs common to embedded programs. We do not, for example, consider unbounded loops,
dynamic memory allocation, and first-class pointers, as they are not commonly used in embedded
programs. Bounded loops can be unrolled into commands with if statements, which we do support.
We leave extending our work to handle pointers as future work. Our recent work suggests that
with a type system like Rust, pointers can be straightforwardly incorporated [60].

Variable Annotations. Our typing rules ensure the correctness of intermittent execution, taking
programmer-provided typing annotations as input. A typing error would surface if the program’s
access patterns of a variable do not agree with its typing annotations. For example, if a variable
exhibiting WAR patterns is not annotated as being checkpointed, a type error would occur. Pro-
grammers need to change the annotation of this variable for the program to type check. To give
another example, T-P-Ckpt checks that all must-first-write variables have been written by the end
of an atomic region by checking that no variables in the post-context have type qualifier MFstWt.
Additionally, the InitWorldC function, which sets up the initial typing contexts for an atomic region,
checks that the provided read-only, must-first-write, and checkpointed sets are disjoint from each
other. Such annotations can be automatically inferred; for instance, our recent work [60] provides
inference of qualifiers similar to ours.

System Assumptions. The programs accepted by our type system are free frommemory corruption
errors because our simple calculus does not expose raw pointers like C. However, for our results
to apply to real C programs, we would need to assume memory safety. Unsafe memory behavior
would complicate and even invalidate the analysis of which memory location is written to. With

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

Modal Crash Types for WAR-Aware Intermittent Computing 5:41

that said, programs written in a memory safe language like Rust can be analyzed using our type
system (c.f. [60]).

Implementation. We plan to implement our modal crash type system, targeting Rust as its
memory safety guarantees match our assumptions. Moreover, the existing Rust implementation
of Curricle [60] serves as an attractive starting point, since it supports both type checking and
inference for an extended set of access qualifiers compared to those used in this work. However,
Curricle’s type system uses only one store (so has simpler well-formedness conditions for memory),
has simpler conditions for checking crashes/power failures, and does not support shift operations.
Thus, developing an implementation that combines Curricle’s more sophisticated access qualifiers
and checkpointing policies with crash types’ more sophisticated treatment of crashes and restores
remains future work.

Forward Progress. Finally, in this article, we show that if there is enough energy in the symbolic
energy channel, the program will eventually finish executing in a finite number of attempted power
cycles. However, we cannot in general guarantee that there is always enough energy to do so.
Reasoning about actual energy consumption for embedded systems is highly complex and we leave
it as future work.

12 Conclusion
This work provides the first logical interpretation of intermittent execution for programs consisting
of atomic and JIT regions.We apply adjoint logic to define crash types which internalize the dualities
between stable and unstable values, and complete versus partial (re-)executions of intermittent
programs. The typing constraints capture invariants of power failure, restoration, and re-execution
in intermittent systems. The proofs of progress, preservation, the fundamental theorem, and
adequacy imply the correctness of intermittent systems, i.e., idempotency of execution.

Acknowledgment
We especially thank the TOPLAS reviewers, whose feedback helped to improve the presentation
and readability of this article.

References
[1] Joshua Adkins, Bradford Campbell, Branden Ghena, Neal Jackson, Pat Pannuto, and Prabal Dutta. 2016. The Signpost

network: Demo abstract. In Proceedings of the 14th ACM Conference on Embedded Network Sensor Systems CD-ROM
(SenSys ’16), 320–321. DOI: https://doi.org/10.1145/2994551.2996542

[2] Amal Ahmed, Derek Dreyer, and Andreas Rossberg. 2009. State-dependent representation independence. In Proceedings
of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’09). ACM, New
York, NY, 340–353. DOI: https://doi.org/10.1145/1480881.1480925

[3] Amal Jamil Ahmed. 2004. Semantics of Types for Mutable State. PhD thesis. Princeton University.
[4] D. Balsamo, A. Weddell, A. Das, A. Arreola, D. Brunelli, B. Al-Hashimi, G. Merrett, and L. Benini. 2016. Hibernus++: A

self-calibrating and adaptive system for transiently-powered embedded devices. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 99 (2016), 1. DOI: https://doi.org/10.1109/TCAD.2016.2547919

[5] Domenico Balsamo, Alex S. Weddell, Geoff V. Merrett, Bashir M. Al-Hashimi, Davide Brunelli, and Luca Benini. 2015.
Hibernus: Sustaining computation during intermittent supply for energy-harvesting systems. IEEE Embedded Systems
Letters 7, 1 (2015), 15–18. DOI: https://doi.org/10.1109/LES.2014.2371494

[6] Stephanie Balzer, Bernardo Toninho, and Frank Pfenning. 2019. Manifest deadlock-freedom for shared session types.
In Proceedings of the 29th European Symposium on Programming, 611–639.

[7] Nick Benton and Philip Wadler. 1996. Linear logic, monads and the lambda calculus. In Proceedings of the 11th Annual
IEEE Symposium on Logic in Computer Science. IEEE, 420–431.

[8] P. Nick Benton. 1994. A mixed linear and non-linear logic: Proofs, terms and models. In Proceedings of the International
Workshop on Computer Science Logic. Springer, 121–135.

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

https://doi.org/10.1145/2994551.2996542
https://doi.org/10.1145/1480881.1480925
https://doi.org/10.1109/TCAD.2016.2547919
https://doi.org/10.1109/LES.2014.2371494

5:42 M. Dotzel et al.

[9] Gautier Berthou, Pierre-Évariste Dagand, Delphine Demange, Rémi Oudin, and Tanguy Risset. 2020. Intermittent
computing with peripherals, formally verified. In Proceedings of the 21st ACM SIGPLAN/SIGBED Conference on
Languages, Compilers, and Tools for Embedded Systems (LCTES ’20). ACM, New York, NY, 85–96. DOI: https://doi.org/
10.1145/3372799.3394365

[10] Lars Birkedal, Kristian Støvring, and Jacob Thamsborg. 2009. Realizability semantics of parametric polymorphism,
general references, and recursive types. In Proceedings of the International Conference on Foundations of Software
Science and Computational Structures (FOSSACS ’09). Springer, 456–470.

[11] Guy E. Blelloch, Phillip B. Gibbons, Yan Gu, Charles McGuffey, and Julian Shun. 2018. The parallel persistent memory
model. In Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures (SPAA ’18), 247–258.
DOI: https://doi.org/10.1145/3210377.3210381

[12] James Bornholt, Antoine Kaufmann, Jialin Li, Arvind Krishnamurthy, Emina Torlak, and Xi Wang. 2016. Specifying
and checking file system crash-consistency models. ACM SIGARCH Computer Architecture News 44, 2 (Mar. 2016),
83–98. DOI: https://doi.org/10.1145/2980024.2872406

[13] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans Kaashoek, and Nickolai Zeldovich. 2015. Using
crash Hoare logic for certifying the FSCQ file system. In Proceedings of the 25th Symposium on Operating Systems
Principles (SOSP ’15). ACM, New York, NY, 18–37. DOI: https://doi.org/10.1145/2815400.2815402

[14] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta, Ranjit Jhala, and Steven Swanson.
2011. NV-Heaps: Making persistent objects fast and safe with next-generation, non-volatile memories. In Proceedings
of the 16th International Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS XVI), 105–118. DOI: https://doi.org/10.1145/1950365.1950380

[15] Alexei Colin and Brandon Lucia. 2016. Chain: Tasks and channels for reliable intermittent programs. In Proceedings of
the ACM International Conference on Object Oriented Programming Systems Languages and Applications (OOPSLA ’16),
514–530. DOI: https://doi.org/10.1145/2983990.2983995

[16] Alexei Colin and Brandon Lucia. 2018. Termination checking and task decomposition for task-based intermittent
programs. In Proceedings of the 27th International Conference on Compiler Construction, 116–127.

[17] Manjeet Dahiya and Sorav Bansal. 2018. Automatic verification of intermittent systems. In Verification, Model Checking,
and Abstract Interpretation. Dillig Isil and Palsberg Jens (Eds.), Springer International Publishing, Cham, 161–182.

[18] Ankush Das, Stephanie Balzer, Jan Hoffmann, Frank Pfenning, and Ishani Santurkar. 2021. Resource-aware session
types for digital contracts. In Proceedings of the IEEE 34th Computer Security Foundations Symposium (CSF ’21), 1–16.

[19] Farzaneh Derakhshan, Myra Dotzel, Milijana Surbatovich, and Limin Jia. 2023. Modal crash types for intermittent
computing. In Proceedings of the 32nd European Symposium on Programming Languages and Systems (ESOP ’23), Held
as Part of the European Joint Conferences on Theory and Practice of Software (ETAPS ’23). Springer-Verlag, Berlin,
168–196. DOI: https://doi.org/10.1007/978-3-031-30044-8_7

[20] Emanuele D’Osualdo, Azalea Raad, and Viktor Vafeiadis. 2023. The path to durable linearizability. Proceedings of the
ACM on Programming Languages 7, POPL, Article 26 (Jan. 2023), 27 pages. DOI: https://doi.org/10.1145/3571219

[21] Myra Dotzel, Farzaneh Derakhshan, Milijana Surbatovich, and Limin Jia. 2023. Technical Report: Modal Crash Types
for WAR-Aware Intermittent Computing. Technical Report. Carnegie Mellon University. DOI: https://doi.org/10.1184/
R1/24556708

[22] Derek Dreyer, Georg Neis, and Lars Birkedal. 2012. The impact of higher-order state and control effects on local
relational reasoning. Journal of Functional Programming 22, 4–5 (2012), 477–528.

[23] Gidon Ernst, Jörg Pfähler, Gerhard Schellhorn, andWolfgang Reif. 2016. Inside a verified flash file system: Transactions
and garbage collection. In Verified Software: Theories, Tools, and Experiments. Arie Gurfinkel and Sanjit A. Seshia (Eds.),
Springer International Publishing, Cham, 73–93. DOI: https://doi.org/10.1007/978-3-319-29613-5_5

[24] Josiah Hester, Kevin Storer, and Jacob Sorber. 2017. Timely execution on intermittently powered batteryless sensors.
In Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems, 1–13. DOI: https://doi.org/10.1145/
3131672.3131673

[25] Joseph Izraelevitz, Hammurabi Mendes, and Michael L. Scott. 2016. Linearizability of persistent memory objects under
a full-system-crash failure model. In Distributed Computing. Cyril Gavoille and David Ilcinkas (Eds.), Springer, Berlin,
313–327.

[26] Rajeev Joshi and Gerard Holzmann. 2007. A mini challenge: Build a verifiable filesystem. Formal Aspects of Computing
19 (Jun. 2007), 269–272. DOI: https://doi.org/10.1007/s00165-006-0022-3

[27] Achim Jung and Jerzy Tiuryn. 1993. A new characterization of lambda definability. In Proceedings of the International
Conference on Typed Lambda Calculi and Applications. Springer, 245–257.

[28] Vito Kortbeek, Kasim Sinan Yildirim, Abu Bakar, Jacob Sorber, Josiah Hester, and Przemysław Pawełczak. 2020.
Time-sensitive intermittent computing meets legacy software. In Proceedings of the 25th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS ’20). ACM, New York, NY, 85–99.
DOI: https://doi.org/10.1145/3373376.3378476

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

https://doi.org/10.1145/3372799.3394365
https://doi.org/10.1145/3372799.3394365
https://doi.org/10.1145/3210377.3210381
https://doi.org/10.1145/2980024.2872406
https://doi.org/10.1145/2815400.2815402
https://doi.org/10.1145/1950365.1950380
https://doi.org/10.1145/2983990.2983995
https://doi.org/10.1007/978-3-031-30044-8_7
https://doi.org/10.1145/3571219
https://doi.org/10.1184/R1/24556708
https://doi.org/10.1184/R1/24556708
https://doi.org/10.1007/978-3-319-29613-5_5
https://doi.org/10.1145/3131672.3131673
https://doi.org/10.1145/3131672.3131673
https://doi.org/10.1007/s00165-006-0022-3
https://doi.org/10.1145/3373376.3378476

Modal Crash Types for WAR-Aware Intermittent Computing 5:43

[29] Daniel R. Licata andMichael Shulman. 2016. Adjoint logic with a 2-category of modes. In Proceedings of the International
Symposium on Logical Foundations of Computer Science. Springer, 219–235.

[30] Daniel R. Licata, Michael Shulman, and Mitchell Riley. 2017. A fibrational framework for substructural and modal
logics. In Proceedings of the 2nd International Conference on Formal Structures for Computation and Deduction (FSCD
’17), 1–22. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[31] Brandon Lucia, Brad Denby, Zachary Manchester, Harsh Desai, Emily Ruppel, and Alexei Colin. 2021. Computational
nanosatellite constellations: Opportunities and challenges. GetMobile: Mobile Computing and Communications 25, 1
(Jun. 2021), 16–23. DOI: https://doi.org/10.1145/3471440.3471446

[32] Brandon Lucia and Benjamin Ransford. 2015. A simpler, safer programming and execution model for intermittent
systems. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’15), 575–585. DOI: https://doi.org/10.1145/2737924.2737978

[33] Kaisheng Ma, Yang Zheng, Shuangchen Li, Karthik Swaminathan, Xueqing Li, Yongpan Liu, Jack Sampson, Yuan Xie,
and Vijaykrishnan Narayanan. 2015. Architecture exploration for ambient energy harvesting nonvolatile processors.
In Proceedings of the 2015 IEEE 21st International Symposium on High Performance Computer Architecture (HPCA),
526–537. DOI: https://doi.org/10.1109/HPCA.2015.7056060

[34] Kiwan Maeng, Alexei Colin, and Brandon Lucia. 2017. Alpaca: Intermittent execution without checkpoints. Proceedings
of the ACM on Programming Languages 1, OOPSLA, Article 96 (Oct. 2017), 96:1–96:30 pages. DOI: https://doi.org/10.
1145/3133920

[35] Kiwan Maeng and Brandon Lucia. 2019. Supporting peripherals in intermittent systems with just-in-time checkpoints.
In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’19),
1101–1116. DOI: https://doi.org/10.1145/3314221.3314613

[36] Kiwan Maeng and Brandon Lucia. 2020. Adaptive low-overhead scheduling for periodic and reactive intermittent
execution. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’20). ACM, New York, NY, 1005–1021. DOI: https://doi.org/10.1145/3385412.3385998

[37] Eugenio Moggi. 1988. Computational Lambda-Calculus and Monads. PhD thesis. University of Edinburgh, Department
of Computer Science, Laboratory for Foundations of Computer Science.

[38] Dushyanth Narayanan and Orion Hodson. 2012. Whole-system Persistence. In Proceedings of the 17th International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS XVII), 401–410. DOI:
https://doi.org/10.1145/2150976.2151018

[39] Matteo Nardello, Harsh Desai, Davide Brunelli, and Brandon Lucia. 2019. Camaroptera: A batteryless long-range
remote visual sensing system. In Proceedings of the 7th International Workshop on Energy Harvesting & Energy-Neutral
Sensing Systems (ENSsys’19). ACM, New York, NY, 8–14. DOI: https://doi.org/10.1145/3362053.3363491

[40] NASA. 2022. KickSat-2. Retrieved January 23, 2025 from https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?
id=2018-092G

[41] Gian Ntzik, Pedro da Rocha Pinto, and Philippa Gardner. 2015. Fault-tolerant resource reasoning. In Proceedings of
the Programming Languages and Systems (ESOP ’15). Xinyu Feng and Sungwoo Park (Eds.), Springer International
Publishing, Cham, 169–188.

[42] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. 2014. Memory persistency. In Proceeding of the 41st Annual
International Symposium on Computer Architecture (ISCA ’14), 265–276. Piscataway, NJ. DOI: https://doi.org/10.1109/
ISCA.2014.6853222

[43] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. 2015. Memory persistency: Semantics for byte-addressable
nonvolatile memory technologies. IEEE Micro 35, 3 (2015), 125–131.

[44] Frank Pfenning and Rowan Davies. 2001. A judgmental reconstruction of modal logic. Mathematical Structures in
Computer Science 11, 4 (2001), 511–540.

[45] Gordon Plotkin and John Power. 2001. Semantics for algebraic operations. Electronic Notes in Theoretical Computer
Science 45 (2001), 332–345.

[46] Gordon Plotkin and Matija Pretnar. 2009. Handlers of algebraic effects. In Proceedings of the 19th European Symposium
on Programming. Springer, 80–94.

[47] Matija Pretnar and Gordon D. Plotkin. 2013. Handling algebraic effects. Logical Methods in Computer Science 9 (2013),
1–36.

[48] Klaas Pruiksma and Frank Pfenning. 2021. A message-passing interpretation of adjoint logic. Journal of Logical and
Algebraic Methods in Programming 120 (2021), 100637.

[49] Azalea Raad and Viktor Vafeiadis. 2018. Persistence semantics for weak memory: Integrating epoch persistency with
the TSO memory model. Proceedings of the ACM on Programming Languages 2, OOPSLA, Article 137 (Oct. 2018), 27
pages. DOI: https://doi.org/10.1145/3276507

[50] Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis. 2019. Persistency semantics of the Intel-X86 ar-
chitecture. Proceedings of the ACM on Programming Languages 4, POPL, Article 11 (Dec. 2019), 31 pages. DOI:

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

https://doi.org/10.1145/3471440.3471446
https://doi.org/10.1145/2737924.2737978
https://doi.org/10.1109/HPCA.2015.7056060
https://doi.org/10.1145/3133920
https://doi.org/10.1145/3133920
https://doi.org/10.1145/3314221.3314613
https://doi.org/10.1145/3385412.3385998
https://doi.org/10.1145/2150976.2151018
https://doi.org/10.1145/3362053.3363491
https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=2018-092G
https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=2018-092G
https://doi.org/10.1109/ISCA.2014.6853222
https://doi.org/10.1109/ISCA.2014.6853222
https://doi.org/10.1145/3276507

5:44 M. Dotzel et al.

https://doi.org/10.1145/3371079
[51] Azalea Raad, JohnWickerson, and Viktor Vafeiadis. 2019. Weak persistency semantics from the ground up: Formalising

the persistency semantics of ARMv8 and transactional models. Proceedings of the ACM on Programming Languages 3,
OOPSLA, Article 135 (Oct. 2019), 27 pages. DOI: https://doi.org/10.1145/3360561

[52] Benjamin Ransford, Jacob Sorber, and Kevin Fu. 2011. Mementos: System support for long-running computation
on RFID-scale devices. In Proceedings of the 16th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS XVI), 159–170. DOI: https://doi.org/10.1145/1950365.1950386

[53] Jason Reed. 2009. A Judgmental Deconstruction of Modal Logic. Carnegie Mellon University.
[54] Emily Ruppel and Brandon Lucia. 2019. Transactional concurrency control for intermittent, energy-harvesting

computing systems. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’19), 1085–1100. DOI: https://doi.org/10.1145/3314221.3314583

[55] Gerhard Schellhorn, Gidon Ernst, Jörg Pfähler, Dominik Haneberg, and Wolfgang Reif. 2014. Development of a verified
flash file system. In Proceedings of the 4th International Conference on Abstract State Machines, Alloy, B, TLA, VDM, and
Z-Volume 8477 (ABZ ’14). Springer-Verlag, Berlin, 9–24. DOI: https://doi.org/10.1007/978-3-662-43652-3_2

[56] Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, and Xi Wang. 2016. Push-button verification of file systems via
crash refinement. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI ’16). USENIX Association, Savannah, GA, 1–16. DOI: https://doi.org/10.5555/3026877.3026879

[57] Milijana Surbatovich, Limin Jia, and Brandon Lucia. 2019. I/O dependent idempotence bugs in intermittent systems.
Proceedings of the ACM on Programming Languages 3, OOPSLA, Article 183 (Oct. 2019), 31 pages. DOI: https:
//doi.org/10.1145/3360609

[58] Milijana Surbatovich, Limin Jia, and Brandon Lucia. 2021. Automatically enforcing fresh and consistent inputs in
intermittent systems. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation (PLDI ’21). ACM, New York, NY, 851–866. DOI: https://doi.org/10.1145/3453483.3454081

[59] Milijana Surbatovich, Brandon Lucia, and Limin Jia. 2020. Towards a formal foundation of intermittent computing.
Proceedings of the ACM on Programming Languages 4, OOPSLA, Article 163 (Nov. 2020), 31 pages. DOI: https:
//doi.org/10.1145/3428231

[60] Milijana Surbatovich, Naomi Spargo, Limin Jia, and Brandon Lucia. 2023. A type system for safe intermittent computing.
Proceedings of the ACM on Programming Languages 7, PLDI, Article 136 (Jun. 2023), 25 pages. DOI: https://doi.org/10.
1145/3591250

[61] Jacob Thamsborg and Lars Birkedal. 2011. A Kripke logical relation for effect-based program transformations. ACM
SIGPLAN Notices 46, 9 (2011), 445–456.

[62] Joel Van Der Woude and Matthew Hicks. 2016. Intermittent computation without hardware support or programmer
intervention. In Proceedings of 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’16),
17–32. DOI: https://doi.org/10.5555/3026877.3026880

[63] Haris Volos, Andres Jaan Tack, andMichael M. Swift. 2011. Mnemosyne: Lightweight persistent memory. In Proceedings
of the 16th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS
XVI), 91–104. DOI: https://doi.org/10.1145/1950365.1950379

[64] Kasim Sinan Yildirim, Amjad Yousef Majid, Dimitris Patoukas, Koen Schaper, Przemyslaw Pawelczak, and Josiah
Hester. 2018. InK: Reactive kernel for tiny batteryless sensors. In Proceedings of the 16th ACM Conference on
Embedded Networked Sensor Systems (SenSys ’18). ACM, New York, NY, 41–53. DOI: https://doi.org/10.1145/3274783
3274837

Appendices
A Store Typing
The rules in Figure A1 define the well-formedness of NV and V with respect to Ω which corresponds
to a crash where V is dropped. The rules are similar, but here the typing judgments of the values E
and E ′ handle the possibility of a crash. This definition is only used in proofs of minor lemmas, so it
is included here in the appendix rather than in the main text.

B Progress and Preservation for Open Configurations
Lemma B.1 (Progress for Shifted Expressions). If

Md | 1:nat | Ω `'3 4 : ↑�

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

https://doi.org/10.1145/3371079
https://doi.org/10.1145/3360561
https://doi.org/10.1145/1950365.1950386
https://doi.org/10.1145/3314221.3314583
https://doi.org/10.1007/978-3-662-43652-3_2
https://doi.org/10.5555/3026877.3026879
https://doi.org/10.1145/3360609
https://doi.org/10.1145/3360609
https://doi.org/10.1145/3453483.3454081
https://doi.org/10.1145/3428231
https://doi.org/10.1145/3428231
https://doi.org/10.1145/3591250
https://doi.org/10.1145/3591250
https://doi.org/10.5555/3026877.3026880
https://doi.org/10.1145/1950365.1950379
https://doi.org/10.1145/3274783.3274837
https://doi.org/10.1145/3274783.3274837

Modal Crash Types for WAR-Aware Intermittent Computing 5:45

Fig. A1. Well-formedness of NV | V w.r.t. Ω.

then ∀ = : nat with = > 0 and ∀NV,V, W with `Md
W NV | V : Ω, either

—+0; (W | Md | = | NV | V | 4) or
—∃(W | Md | =′ | NV | V | 4′) such that W | Md | = | NV | V | 4 → W | Md | =′ | NV | V | 4′.

Proof. The proof proceeds by structural induction over Md | 1 : nat | Ω `'3 4 : ↑�. We include
the full proof in the extended TR [21]. �

Theorem B.2 (Progress for Expressions). If Md | 1 R < : nat | Ω; Σ `'3 ;Sig 4 : g , then
∀ = : =0C with =R< and ∀ NV,V, W with `Md

W NV | V : Ω | Σ, either

—+0; (W | Md | = | NV | V | 4) or
—∃(W | Md | =′ | NV | V | 4′) such that W | Md | = | NV | V | 4 → W | Md | =′ | NV | V | 4′.

Proof. The proof is by structural induction over Md | 1 R < : nat | Ω; Σ `'3 ;Sig 4 : g . We
consider a specific (co-)natural number =R< and contexts NV,V, W with `Md

W NV | V : Ω | Σ. We
include the full proof in the extended TR [21]. �

Lemma B.3. If `Md
W NV | V : Ω | Σ and Σ = ↓Σ′, then `Md

W NV | V : Ω, Σ′.

Proof. The proof is by induction on the structure of `Md
W NV | V : Ω | Σ. For each step in the

derivation, we build the corresponding step of a derivation for `Md
W NV | V : Ω, Σ′ according to the

well-formedness definition. �

Theorem 6.1 (Progress for Commands). If Md | 1 R < : nat | Ω; Σ `Sig 2 : g a Ω′, then ∀
= : nat with =R< and ∀W,NV,V with `Md

W NV | V : Ω | Σ, either

—+0; (W | Md | = | NV | V | 2) or
—∃(W ′ | Md′ | =′ | NV′ | V′ | 2′) such that W | Md | = | NV | V | 2 → W ′ | Md′ | =′ | NV′ | V′ | 2′.

Proof. The proof is by structural induction over Md | 1 R < : nat | Ω; Σ `Sig 2 : g a Ω′. We
include the full proof in the extended TR [21]. �

Axiom 1 (Positive Input to Generation Channel). Y # in() : nat > 0.

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

5:46 M. Dotzel et al.

Lemma B.4 (Well-Typedness of Expressions Under Crash in jit). jit | 1 = 0 : nat |
Ω; Σ `RD;Sig′ 4 : Cjit

A for Sig′ = {jit | 1 ≥ 0 : nat | Ω; Σ `RD 4 : Cjit
A }.

Proof. We include the full proof in the extended TR [21]. �

Lemma B.5 (Well-Typedness of Expressions Under Crash in aID). If aID(20) | 1 = 0 : nat |
Ω; Σ′ `RD;Sig 4′ : g then for all 4 and Σ, aID(20) | 1 = 0 : nat | Ω; Σ `RD;Sig 4 : g .

Proof. We include the full proof in the extended TR [21]. �

Lemma B.6 (Well-Typedness of Commands Under Crash in jit). jit | 1 = 0 : nat |
Ω; Σ `Sig′ 2 : Cjit

unit for Sig′ = {jit | 1 ≥ 0 : nat | Ω; Σ ` 2 : Cjit
unit}.

Proof. We include the full proof in the extended TR [21]. �

Lemma B.7 (Well-Typedness of Commands Under Crash in aID). If aID(20) | 1 = 0 : nat |
Ω; Σ′ `Sig 2

′ : g then for all 2 and Σ, aID(20) | 1 = 0 : nat | Ω; Σ `Sig 2 : g .

Proof. We include the full proof in the extended TR [21]. �

Theorem B.8 (Preservation for Expressions). If

(†) Md | 1 ≥ 0 : =0C | Ω; Σ `RD;Sig 4 : g

and for some `Md
W NV | V : Ω | Σ and (co-)natural number = ≥ 0, we have

W | Md | = | NV | V | 4 → W | Md | =′ | NV | V | 4′

then
Md | 1 ≥ 0 : =0C | Ω; Σ `RD;Sig 4′ : g

with =′ ≥ 0.

Proof. The proof is by induction on the size of 4 . We include the full proof in the extended
TR [21]. �

Definition B.9. We write Σ′ = trim(Σ,V, W) where G :g@@ ∈ Σ′ iff W = [G ↦→ ℓ], W ′ and G :g@@ ∈ Σ
and ℓ ∈ dom(V).

Lemma B.10 (Eqality of Trimmed Volatile Contexts). If

(i) Σ′ = trim(Σ,V0, W0)
(ii) `Md

W NV | V : Ω | Σ
(iii) `Md

W ′′ NV′ | V′ : Ω | Σ′′

(iv) 3><(V0) ⊆ 3><(V) and 3><(V0) ⊆ 3><(V′)
(v) W0 ⊆ W and W0 ⊆ W ′′

then Σ′ = trim(Σ′′,V0, W0).

Proof. We include the full proof in the extended TR [21]. �

Lemma B.11 (Well-Formedness of Smaller Memories). If

(i) `Md
W NV | V : Ω | Σ,

(ii) V′′ = V � dom(V′),
(iii) Σ′ = trim(Σ,V′, W ′), and
(iv) W ′ ⊆ W

then `Md
W ′ NV | V′′ : Ω | Σ′.

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

Modal Crash Types for WAR-Aware Intermittent Computing 5:47

Proof. The proof proceeds by induction on the size of V − V′′. We include the full proof in the
extended TR [21]. �

Lemma B.12 (Monotonicity of Volatile Memories). If W | Md | = | NV | V | 2 → W ′ | Md | =′ |
NV′ | V′ | 2′ where 2 ≠ 21;, 22, then 3><(V) ⊆ 3><(V′) and W ⊆ W ′.

Proof. The proof is straightforward, proceeding in cases on the dynamic rules. �

Definition B.13. Ω > Ω′ iff ∀G :g@@ ∈ , we have G :g@@′ ∈ Ω′ where @′ ≠ *# and either @ = @′

or X (@,, C) = @′.

Lemma B.14. If Md | 1 > 0 : nat | Ω; Σ `Sig 2 : CMd
unit a Ω′, then 3><(Ω) ⊆ 3><(Ω′).

Proof. The proof is by induction on the size of 2 . We consider possible cases for Md | 1 > 0 :
nat | Ω; Σ `Sig 2 : CMd

unit a Ω′.

Case [T-C-Shift].
Σ = ↓Σ′ Ω = Ω′,Ω′′

ck Md | 1 : nat | Ω′, Σ′ `Sig skip : ↑unit a Ω1

Md | 1 : nat | Ω; Σ `Sig skip : ↓↑unit a Ω1�3><(Ω)
(T-C-Shift)

By definition of �, we obtain the desired result 3><(Ω) ⊆ 3><(Ω1�3><(Ω)).

Case [T-seq].
Md | 1 ≥ 0 : nat | Ω; Σ `Sig 21 : CMd

unit a Ω′ Md | 1 ≥ 0 : nat | Ω′; Σ `Sig 22 : g a Ω′′

Md | 1 > 0 : nat | Ω; Σ `Sig 21; 22 : g a Ω′′ (T-seq)

By inversion of T-seq, we learn that
—Md | 1 ≥ 0 : nat | Ω; Σ `Sig 21 : CMd

unit a Ω′

—Md | 1 ≥ 0 : nat | Ω′; Σ `Sig 22 : g a Ω′′

By applying the inductive hypothesis to each of these judgments, we learn that 3><(Ω) ⊆
3><(Ω′) and 3><(Ω′) ⊆ 3><(Ω′′). By transitivity, we establish the desired result 3><(Ω) ⊆
3><(Ω′′).

Case [T-seq-d]. This case is similar to T-seq.

Case [T-∨-Succ,T-Let,T-Assign,T-If,T-enough?]. In each case, we apply the inductive hy-
pothesis to learn that 3><(Ω) ⊆ 3><(Ω′). �

Theorem 6.2 (Preservation for Commands). If

(†) Md | 1 ≥ 0 : =0C | Ω; Σ `Sig 2 : g a Ω′

and W | Md | = | NV | V | 2 is well-formed, `Md
W NV | V : Ω | Σ, 3><(NVck) ⊆ 3><(V), and for some

(co-)natural number = ≥ 0, we have

W | Md | = | NV | V | 2 → W ′ | Md | =′ | NV′ | V′ | 2′

then for some Σ′, and Ω0

Md | 1 ≥ 0 : =0C | Ω0; Σ
′ `Sig 2

′ : g a Ω′

where `Md
W ′ NV′ | V′ : Ω0 | Σ′, Ω > Ω0, and =′ ≥ 0. Moreover W ′ | Md | =′ | NV′ | V′ | 2′ is

well-formed. Moreover, 3><(NV) = 3><(NV′), and if Md = aID(20), then NV′ \ {MFstWt, Wtn} =
NV \ {MFstWt, Wtn} and 3><(NV′

ck) ⊆ 3><(V′).

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

5:48 M. Dotzel et al.

Proof. The proof is by induction on the size of 2 . We consider possible cases for W | Md | = |
NV | V | 2 → W ′ | Md′ | =′ | NV′ | V′ | 2′ and only show the most interesting ones.

Case [D-Assign-V].
Val(W | Md | = | NV | V | 4)

V = V′, ℓ@@ ↩→ E ′ @′ = X (@, wt) ≠ UN W = W ′, [G → ℓ] = = =′ + 1

W | Md | = | NV | V | G := 4 → W | Md | =′ | NV | V′, ℓ@@′ ↩→ 4 | skip
(D-Assign-V)

By the last premise = > 0, and =′ ≥ 0. By inversion on (†) via T-Enough? rule, we have

(†1) Md | 1 > 0 : nat | Ω; Σ `Sig G := 4 : g a Ω′

and
(†2) Md | 1 = 0 : nat | Ω; Σ `Sig′′ G := 4 : g

where Sig′′ = 8 5 Md = jit Cℎ4= Sig′ 4;B4 Sig and Sig′ = {Md | 1 ≥ 0 : nat | Ω; Σ ` G := 4 :
g}.
By inversion on (†1) via T-Assign

Md | 1 ≥ 0 : nat | Ω; Σ `RD;Sig 4 : CMd
� Md | 1 > 0 : nat | Ω; Σ `WT G : ↓↑� a Ω′

Md | 1 > 0 : nat | Ω; Σ `Sig G := 4 : CMd
unit a Ω′ (T-Assign)

we have
(1) Md | 1 ≥ 0 : nat | Ω; Σ `RD;Sig 4 : CMd

�

(2) Md | 1 > 0 : nat | Ω; Σ `WT G : ↓↑� a Ω′

By V-loc and the definition of V, we have that `Md
W NV | V′, (ℓ@Ck ↩→ E ′) : Ω | Σ0, (G :↓↑

�@Ck) where Σ = Σ0, (G :↓↑ �@CK). It follows by inversion on T-w-Shift and T-Loc-Write

Σ = ↓Σ′

Ω = Ω0,Ω1 ck

Ω0, Σ
′ = G : ↑�@CK,Ω′

2 = Ω′′ CK = X (CK,, C) ≠ UN

Md | 1 > 0 : nat | Ω0, Σ
′ `WT G : ↑� a Ω′′ (T-Loc-Write)

Md | 1 > 0 : nat | Ω; Σ `WT G : ↓↑� a Ω′′�3><(Ω)
(T-w-Shift)

that
—Ω′ = Ω′′�3><(Ω) (∃Ω′′)
—Ω′′ = Ω0, Σ

′

—Σ = ↓Σ′

—Ω = Ω0,Ω1 ck
It follows by assumption NVck ⊆ V and the well-formedness condition `Md

W NV | V : Ω | Σ
that Ω1 ck ⊆ Σ′. Hence Ω ⊆ Ω0, Σ

′. Since Ω′′ = Ω0, Σ
′, it follows that Ω ⊆ Ω′′, and hence

Ω = Ω′′�3><(Ω). Since Ω′ = Ω′′�3><(Ω), we have that Ω = Ω′.

By the premise Val(W | Md | = | NV | V | 4), we can apply inversion on Md | 1 ≥ 0 : nat |
Ω; Σ `RD;Sig 4 : CMd

A via T-Enough?, T-∨-Succ, and T-R-Shift to get

Md | 1 : nat | Ω, Σ′ `RD;Sig 4 : ↑A,
where Σ = ↓Σ′.
Applying V-loc, we can show that `Md

W NV | V′, (ℓ@Ck ↩→ 4) : Ω | Σ0, (G :↓↑ �@Ck) where
Σ′ = Σ0, (G :↓↑ �@Ck).
We want to show that

Md | 1 > 0 : nat | Ω; Σ `Sig skip : Cunit a Ω′′�3><(Ω).

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

Modal Crash Types for WAR-Aware Intermittent Computing 5:49

Noting that Ω = Ω′′�3><(Ω), it follows by T-Skip, T-C-Shift, and T-∨-Succ that

Md | 1 > 0 : nat | Ω; Σ `Sig skip : Cunit a Ω.

We consider two subcases based on Md.
Subcase 1. [Md = Jit]. Let Sig1 = {Md | 1 ≥ 0 : nat | Ω; Σ ` skip : Cunit}. From Lemma
B.6, we get Md | 1 = 0 : nat | Ω; Σ `Sig skip : Cunit.
Subcase 2. [Md = aID(20)]. By (†2) via Lemma B.7, we get Md | 1 = 0 : nat | Ω; Σ `Sig
skip : Cunit.

In both subcases, the desired result follows by T-Enough?:
Sig1 = {Md | 1 ≥ 0 : nat | Ω; Σ ` skip : g}

Sig2 = 8 5 Md = jit Cℎ4= Sig1, 4;B4 Sig Md | 1 = 0 : nat | Ω; Σ `Sig2 skip : Cunit
Md | 1 > 0 : nat | Ω; Σ `Sig skip : Cunit a Ω

Md | 1 ≥ 0 : nat | Ω; Σ `Sig skip : Cunit a Ω
(T-enough?)

Observe that the well-formedness of W | Md | =′ | NV | V′, ℓ@@′ ↩→ 4 | skip follows by
Definition 4.1, vacuously, and Ω > Ω follows by Definition 8.3, both vacuously. Addition-
ally, observe that NV \ {MFstWt, Wtn} = NV \ {MFstWt, Wtn}, as desired. Lastly, note that
3><(V) = 3><(V′, ℓ@@′ ↩→ 4). Therefore, it follows by assumption that 3><(NVck) ⊆
3><(V′, ℓ@@′ ↩→ 4).
Case [D-Assign-NV].

Val(W | Md | = | NV | V | 4)
NV = NV′, ℓ@@ ↩→ E ′ @′ = X (@,Wt) ≠ UN W = W ′, [G → ℓ] = = =′ + 1

W | Md | = | NV | V | G := 4 → W | Md | =′ | NV′, ℓ@@′ ↩→ 4 | V | skip
(D-Assign-NV)

By the last premise = > 0, and =′ ≥ 0. By inversion on (†) via T-Enough? rule, we have

(†1) Md | 1 > 0 : nat | Ω; Σ `Sig G := 4 : g a Ω′

and
(†2) Md | 1 = 0 : nat | Ω; Σ `Sig′′ G := 4 : g

where Sig′′ = 8 5 Md = jit Cℎ4= Sig′ 4;B4 Sig and Sig′ = {Md | 1 ≥ 0 : nat | Ω; Σ ` G := 4 : g}.

By inversion on (†1) via T-Assign
Md | 1 ≥ 0 : nat | Ω; Σ `RD;Sig 4 : CMd

� Md | 1 > 0 : nat | Ω; Σ `WT G : ↓↑� a Ω′

Md | 1 > 0 : nat | Ω; Σ `Sig G := 4 : CMd
unit a Ω′ (T-Assign)

we learn that
(1) Md | 1 ≥ 0 : nat | Ω; Σ `RD;Sig 4 : CMd

�

(2) Md | 1 > 0 : nat | Ω; Σ `WT G : ↓↑� a Ω′

By inversion on (2) via T-w-Shift and T-Loc-Write:
Σ = ↓Σ′ Ω = Ω0,Ω1 ck

Ω0, Σ
′ = G : ↑�@@,Ω′

2 Ω′′ = G : ↑�@@′,Ω′
2 @′ = X (@,, C) ≠ UN

Md | 1 > 0 : nat | Ω0, Σ
′ `WT G : ↑� a Ω′′ (T-Loc-Write)

Md | 1 > 0 : nat | Ω; Σ `WT G : ↓↑� a Ω′′�3><(Ω)
(T-w-Shift)

we have
(i) Ω′ = Ω′′�3><(Ω) (∃Ω′′)
(ii) Σ = ↓Σ′

(iii) Ω = Ω0,Ω1 ck

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

5:50 M. Dotzel et al.

(iv) Ω0, Σ
′ = G : ↑�@@,Ω′

2
(v) Ω′′ = G : ↑�@@′,Ω′

2
(vi) @′ = X (@,Wt) ≠ UN

By Val(W | Md | = | NV | V | 4), we can apply inversion on Md | 1 ≥ 0 : nat | Ω; Σ `RD;Sig
4 : CMd

A via T-Enough?, T-∨-Succ, and T-R-Shift to get

Md | 1 : nat | Ω, Σ′ `RD;Sig 4 : ↑A,

where Σ = ↓Σ′. This is enough to prove `Md
W (ℓ@Ck ↩→ 4,NV′′) | V : (G : ↑�@@′,Ω′

2) | Σ.
From here, we note that since G : ↑�@@, we have G : ↑�@@ ∈ Ω0. Therefore, Ω′′ = Ω0, Σ′ for
some Ω0 < Ω0 (i.e., Ω0 = Ω′′

0 , G : ↑�@@′ where Ω0 = Ω′′
0 , G : ↑�@@).

We now need to show that

Md | 1 > 0 : nat | Ω′; Σ `Sig skip : Cunit a Ω′′�3><(Ω).

Let Ω′ = Ω0,Ω1
ck. By T-Skip, T-C-Shift, and T-∨-Succ, and recalling that Ω′ = Ω′′�3><(Ω)

(as defined above), we have

Σ = ↓Σ′

Ω′ = Ω0,Ω1
ck Md | 1 > 0 : nat | Ω0, Σ′ `Sig skip : ↑unit a Ω′′ (T-Skip)

Md | 1 > 0 : nat | Ω′; Σ `Sig skip : ↓↑unit a Ω′′�3><(Ω′)
(T-C-Shift)

Md | 1 > 0 : nat | Ω′; Σ `Sig skip : Cunit a Ω′′�3><(Ω′)
(T-∨-Succ)

We now need to show that 3><(Ω′) = 3><(Ω). From (i), we have that 3><(Ω′) ⊆ 3><(Ω).
By Lemma B.14, we have that 3><(Ω) ⊆ 3><(Ω′).
We consider two subcases based on Md.
Subcase 1. [Md = Jit]. Let Sig1 = {Md | 1 ≥ 0 : nat | Ω′; Σ ` skip : Cunit}. By Lemma
B.6, we get Md | 1 = 0 : nat | Ω′; Σ ` skip : Cunit.
Subcase 2. [Md = aID(20)]. By (†2) via Lemma B.7, we get Md | 1 = 0 : nat | Ω′; Σ ` skip :
Cunit.

In both subcases, the desired result follows by T-Enough?:

Sig1 = {Md | 1 ≥ 0 : nat | Ω; Σ ` skip : Cunit}
Sig2 = 8 5 Md = jit Cℎ4= Sig1, 4;B4 Sig Md | 1 = 0 : nat | Ω′; Σ `Sig2 skip : Cunit

Md | 1 > 0 : nat | Ω′; Σ `Sig skip : Cunit a Ω′′�3><(Ω′)
Md | 1 ≥ 0 : nat | Ω′; Σ `Sig skip : Cunit a Ω′′�3><(Ω′)

(T-enough?)

Observe that the well-formedness of W | Md | =′ | NV′, ℓ@@′ ↩→ 4 | V | skip follows by
Definition 4.1 vacuously. The detail Ω > Ω′ follows by Definition 8.3, (iv) and (v) from
above, and the premise @′ = X (@,Wt) ≠ UN. If Md = aID(20), we want to show that
NV \ {MFstWt, Wtn} = (NV′, ℓ@@′ ↩→ 4) \ {MFstWt, Wtn}. By definition, NV = NV′, ℓ@@ ↩→
E ′. Since ℓ is written to, @′ = Wtn, and either @ = Wtn or @ = MFstWt. Now we need
to show that NV′, ℓ@@ ↩→ E ′ \ {MFstWt, Wtn} = NV′, ℓ@@′ ↩→ 4 \ {MFstWt, Wtn}. From
above, this reduces to showing NV′ \ {MFstWt, Wtn} = NV′ \ {MFstWt, Wtn} which holds
trivially. Lastly, note that 3><(NV) = 3><(NV′, ℓ@@′ ↩→ 4). Therefore, it follows by as-
sumption, and the definition of X (i.e., @′ = Ck if @ = Ck), that 3><(NV0

ck) ⊆ 3><(V) where
NV′, ℓ@@′ ↩→ 4 = NV0

ck,NV1.

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

Modal Crash Types for WAR-Aware Intermittent Computing 5:51

Case [D-seq-step].
= > 0 W | Md | = | NV | V | 21 → W ′ | Md | =′ | NV′ | V′ | 2′1
W | Md | = | NV | V | 21;, 22 → W ′ | Md | =′ | NV′ | V′ | 2′1;, 22

(D-seq-step)

The premises yield
(a) = > 0
(b) W | Md | = | NV | V | 21 → W ′ | Md | =′ | NV′ | V′ | 2′1
By assumption, note that

—`Md
W NV | V : Ω | Σ

—Md | 1 ≥ 0 : nat | Ω; Σ `Sig 21;, 22 : g a Ω′

—W | Md | = | NV | V | 21;, 22 is well-formed.
Put, = W0 | V0. Then by Definition 4.1, we have 3><(V0) ⊆ 3><(V) and W0 ⊆ W . Observe
that W | Md | = | NV | V | 21 is well-formed, which vacuously follows by Definition 4.1
because 21 does not have the form 2′;, ′ 2′′ and we always run the command 21 before 22.
By inversion of Md | 1 ≥ 0 : nat | Ω; Σ `Sig 21;, 22 : g a Ω′ via T-Enough? rule, we have

(†1) Md | 1 > 0 : nat | Ω; Σ `Sig 21;, 22 : g a Ω′

and
(†2) Md | 1 = 0 : nat | Ω; Σ `Sig′′ 21;, 22 : g

where Sig′′ = 8 5 Md = jit, Cℎ4= Sig′, 4;B4 Sig and Sig′′ = {Md | 1 ≥ 0 : nat | Ω; Σ `
21;, 22 : g}.
By inversion of (†1) via T-seq-d

, = W0 | V0 Md | 1 ≥ 0 : nat | Ω; Σ `Sig 21 : Cunit a Ω′

Σ′ = trim(Σ,V0, W0) Md | 1 ≥ 0 : nat | Ω′; Σ′ `Sig 22 : g a Ω′′

Md | 1 > 0 : nat | Ω; Σ `Sig 21;, 22 : g a Ω′′ (T-seq-d)

we learn that
(1) Md | 1 ≥ 0 : nat | Ω; Σ `Sig 21 : Cunit a Ω′

(2) Σ′ = trim(Σ,V0, W0)
(3) Md | 1 ≥ 0 : nat | Ω′; Σ′ `Sig 22 : g a Ω′′

By the inductive hypothesis applied to (1), (b), the well-formedness of W | Md | = | NV | V | 21,
`Md
W NV | V : Ω | Σ, = ≥ 0, and 3><(NVck) ⊆ 3><(V), we get Md | 1 ≥ 0 : nat | Ω0; Σ′′ `Sig
2′1 : Cunit a Ω′, where

(i) `Md
W ′ NV′ | V′ : Ω0 | Σ′′,

(ii) =′ ≥ 0,
(iii) W ′ | Md | =′ | NV′ | V′ | 2′1 is well-formed,
(iv) Ω > Ω0,
(v) if Md = aID(20), NV \ {MFstWt, Wtn} = NV′ \ {MFstWt, Wtn}, and
(vi) 3><(NV′

ck) ⊆ 3><(V′).
We now need to show that 3><(NV′

ck) ⊆ 3><(V0) ⊆ 3><(V′) and W0 ⊆ W ′. Observe that
21 ≠ 2′;, 2′′ because 21;, 22 and we always run 21 first. By Lemma B.12 and 21 ≠ 2′;, 2′′,
it follows that 3><(V) ⊆ 3><(V′) and W ⊆ W ′. Then it follows by 3><(V0) ⊆ 3><(V) and
W0 ⊆ W (as shown above), that 3><(V0) ⊆ 3><(V) ⊆ 3><(V′) and W0 ⊆ W ⊆ W ′. Additionally,
it follows by assumption that 3><(NV) = 3><(NV′), and so it follows by the assumption
3><(NVck) ⊆ 3><(V0) that 3><(NV′

ck) ⊆ 3><(V0). Hence, 3><(NV′
ck) ⊆ 3><(V0) ⊆

3><(V′) and W0 ⊆ W ′.
It suffices to show Σ′ = trim(Σ′′,V0, W0).

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

5:52 M. Dotzel et al.

By Lemma B.10, it follows that Σ′ = trim(Σ′′,V0, W0).
Using, = W0 | V0, (2), (3), and Md | 1 ≥ 0 : nat | Ω0; Σ′′ `Sig 2

′
1 : Cunit a Ω′, we can apply

T-seq-d

, = W0 | V0 Md | 1 ≥ 0 : nat | Ω0; Σ
′′ `Sig 2

′
1 : Cunit a Ω′

Σ′ = trim(Σ′′,V0, W0) Md | 1 ≥ 0 : nat | Ω′; Σ′ `Sig 22 : g a Ω′′

Md | 1 > 0 : nat | Ω0; Σ
′′ `Sig 2

′
1;, 22 : g a Ω′′ (T-seq-d)

We now need to show that Md | 1 = 0 : nat | Ω0; Σ′′ `Sig 2
′
1;, 22 : g . The proof proceeds in

two subcases based on Md:
Case Md = jit. Let Sig1 = {Md | 1 ≥ 0 : nat | Ω0; Σ′′ ` 2′1;, 22 : g}. It follows by Lemma
B.6 that Md | 1 = 0 : nat | Ω0; Σ′′ ` 2′1;, 22 : g .

Case Md = aID(20). By (†2) via Lemma B.7, we can see that Md | 1 = 0 : nat | Ω0; Σ′′ `
2′1;, 22 :g .

In both cases, Md | 1 = 0 : nat | Ω0; Σ′′ ` 2′1;, 22 : g .
The desired result follows by T-Enough?:

Sig1 = {Md | 1 ≥ 0 : nat | Ω0; Σ
′′ ` 2′1;, 22 : g}

Sig2 = 8 5 Md = jit, Cℎ4= Sig1, 4;B4 Sig Md | 1 = 0 : nat | Ω0; Σ
′′ ` 2′1;, 22 : g

Md | 1 > 0 : nat | Ω0; Σ
′′ ` 2′1;, 22 : g a Ω′′

Md | 1 ≥ 0 : nat | Ω0; Σ
′′ ` 2′1;, 22 : g a Ω′′ (T-enough?)

and (iv), which asserts that Ω > Ω0.
Observe that by Definition 4.1 applied to 3><(NV′

ck) ⊆ 3><(V0) ⊆ 3><(V′) and W0 ⊆ W ′

(as shown above), W ′ | Md | =′ | NV′ | V′ | 2′1;, 22 is well-formed. In the case where 2′1 is of
the form 2′;, 2′′, the rule stepping 21 must be D-seq since 21 ≠ 2′;, 2′′. Thus, observe that
W ′ ⊆ W ′ and 3><(NV′

ck) ⊆ 3><(V′) ⊆ 3><(V′), and hence it follows by Definition 4.1 that
W ′ | Md | =′ | NV′ | V′ | 2′1;, 22 is well-formed.

Note that 3><(NV) = 3><(NV′) holds by observation, and by the inductive hypothesis in
D-seq-step. �

Lemma B.15. If W | Md | = | NV1 | V | 2 → W | Md | =′ | NV′
1 | V′ | 2′ and NV1 \ {MFstWt} =

NV2 \ {MFstWt}, then W | Md | ∞ | NV2 | V | 2 → W | Md | ∞ | NV′
2 | V′ | 2′ and NV′

1 \ {MFstWt} =
NV′

2 \ {MFstWt}.

Proof. The proof is by induction on the size of 2 . We proceed by considering possible cases for
W | Md | = | NV1 | V | 2 → W | Md | = | NV′

1 | V′ | 2′. The most interesting case is [D-Assign-NV].

Case [D-Assign-NV].
Val(W | Md | = | NV | V | 4)

NV = NV′, ℓ@@ ↩→ E ′ @′ = X (@, wt) ≠ UN W = W ′, [G → ℓ] = = =′ + 1

W | Md | = | NV | V | G := 4 → W | Md | =′ | NV′, ℓ@@′ ↩→ 4 | V | skip
(D-Assign-NV)

By inversion of D-Assign-NV, we learn that
(1) Val(W | Md | = | NV | V | 4)
(2) NV = NV′, ℓ@@ ↩→ E ′

(3) @′ = X (@, wt) ≠ UN
(4) W = W ′, [G → ℓ]
(5) = = =′ + 1

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

Modal Crash Types for WAR-Aware Intermittent Computing 5:53

Let NV \ {MFstWt} = NV2 \ {MFstWt}. We want to show that W | Md | ∞ | NV2 | V |
G := 4 → W | Md | ∞ | NV′

2, ℓ@@′ ↩→ 4 | V | skip and NV′, ℓ@@′ ↩→ 4 \ {MFstWt} =

NV′
2, ℓ@@′ ↩→ 4 \ {MFstWt} where NV2 = NV′

2, ℓ@@ ↩→ E ′2.
From (5), we know that (1) is not a crash value (i.e., = > 0, and hence = ≠ 0). Since ∞ > 0,
we have Val(W | Md | ∞ | NV2 | V | 4). By application of D-Assign-NV to Val(W | Md | ∞ |
NV2 | V | 4), NV2 = NV′

2, ℓ@@ ↩→ E ′2, (3), (4), and ∞ > 0, we have

W | Md | ∞ | NV2 | V | G := 4 → W | Md | ∞ | NV′
2, ℓ@@′ ↩→ 4 | V | skip

Towards NV′, ℓ@@′ ↩→ 4 \ {MFstWt} = NV′
2, ℓ@@′ ↩→ 4 \ {MFstWt}, observe that the

assumption NV \ {MFstWt} = NV2 \ {MFstWt} implies NV′ \ {MFstWt} = NV′
2 \ {MFstWt}.

Thus, it follows thatNV′, ℓ@@′ ↩→ 4\{MFstWt} = NV′
2, ℓ@@′ ↩→ 4\{MFstWt}, as desired. �

C Fundamental Theorem
Lemma C.1. If aID(2) | 1 ≥ 0 : nat | Ω′; Σ `Sig 2 : Cunit a Ω′′ and `aID(2)

W0 NV1 | V0 : Ω′ | Σ,
then ∃.(W1 | aID(c) | =1 | NV′

1 | V1 | 21) such that

—W0 | aID(c) | =0 | NV1 | V0 | 2 →∗ W1 | aID(c) | =1 | NV′
1 | V1 | 21,

—NV1 \ {MFstWt, Wtn} = NV′
1 \ {MFstWt, Wtn}, and

—3><(NV1) = 3><(NV′
1).

Proof. We prove this by induction on =0:

Base Case. If =0 = 0, then the configuration is a value.
Inductive Case. Suppose that =0 = =′0 + 1 (∃=′0). Since aID(2) | 1 ≥ 0 : nat | Ω′; Σ `Sig 2 :

Cunit a Ω′′ and `aID(2)
W0 NV1 | V0 : Ω′ | Σ, it follows by the progress theorem (Theorem 8.1)

that either W0 | aID(c) | =0 | NV1 | V0 | 2 is a value or W0 | aID(c) | =0 | NV1 | V0 | 2 is not a
value, in which case ∃ W ′′1 | aID(c) | =′′1 | NV′′

1 | V′′
1 | 2′′1 such that

W0 | aID(c) | =0 | NV1 | V0 | 2 → W ′′1 | aID(c) | =′′1 | NV′′
1 | V′′

1 | 2′′1
where

—aID(2) | 1 ≥ 0 : nat | Ω′′
0 ; Σ

′ `Sig 2
′′
1 : Cunit a Ω′′,

—Ω′ > Ω′′
0 ,

—`aID(2)
W ′′
1

NV′′
1 | V′′

1 : Ω′′
0 | Σ′,

—W ′′1 | aID(c) | =′′1 | NV′′
1 | V′′

1 | 2′′1 is well-formed,
—if Md = aID(2), NV1 \ {MFstWt, Wtn} = NV′′

1 \ {MFstWt, Wtn}, and
—3><(NV1) = 3><(NV′′

1).
We get these conditions by applying the preservation theorem (Theorem 8.2) because W0 |
aID(c) | =0 | NV0 | V0 | 2 is well-formed.
By the inductive hypothesis,

W ′′1 | aID(c) | =′′1 | NV′′
1 | V′′

1 | 2′′1 →∗ W ′1 | aID(c) | =′1 | NV′
1 | V′

1 | 2′1,

where
—W ′1 | aID(c) | =′1 | NV′

1 | V′
1 | 2′1 is well-formed and a value,

—Ω′′
0 > Ω′

0,
—aID(2) | 1 ≥ 0 : nat | Ω′

0; Σ
′′ `Sig 2

′
1 : Cunit a Ω′′,

—`aID(2)
W ′
1

NV′
1 | V′

1 : Ω
′
0 | Σ′′,

—if Md = aID(2), NV′′
1 \ {MFstWt, Wtn} = NV′

1 \ {MFstWt, Wtn}, and
—3><(NV′′

1) = 3><(NV′
1).

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

5:54 M. Dotzel et al.

By head expansion, we establish that

W0 | aID(c) | =0 | NV1 | V0 | 2 →∗ W ′1 | aID(c) | =′1 | NV′
1 | V′

1 | 2′1
where NV1 \ {MFstWt, Wtn} = NV′

1 \ {MFstWt, Wtn} and 3><(NV1) = 3><(NV′
1). �

Lemma C.2. If W0 | aID(c) | =0 | NV1 | V0 | 2 →< W1 | aID(c) | =1 | NV′
1 | V1 | 21 and

NV1 \ {MFstWt} = NV2 \ {MFstWt}, then W0 | aID(c) | ∞ | NV2 | V0 | 2 →< W ′1 | aID(c) | ∞ |
NV′

2 | V′
1 | 2′1 where NV′

1 \ {MFstWt} = NV′
2 \ {MFstWt}.

Proof. The proof proceeds by induction on the number of steps< such that W0 | aID(c) | =0 |
NV1 | V0 | 2 →< W ′1 | aID(c) | =′1 | NV′

1 | V′
1 | 2′1.

Base Case (< = 0). By assumption, NV1 \ {MFstWt} = NV2 \ {MFstWt}. Trivially,
W0 | aID(c) | ∞ | NV2 | V0 | 2 →0 W0 | aID(c) | ∞ | NV2 | V0 | 2

where NV1 \ {MFstWt} = NV2 \ {MFstWt}.
Inductive Case (< = : + 1). Suppose that< = : + 1 such that

W0 | aID(c) | =0 | NV1 | V0 | 2
→W ′′1 | aID(c) | =′′1 | NV′′

1 | V′′
1 | 2′′1

→:W ′1 | aID(c) | =′1 | NV′
1 | V′

1 | 2′1
By assumption, NV1 \ {MFstWt} = NV2 \ {MFstWt}. Hence, it follows by Lemma B.15

W0 | aID(c) | ∞ | NV2 | V0 | 2 → W ′′1 | aID(c) | ∞ | NV′′
2 | V′′

1 | 2′′1
where NV′′

1 \ {MFstWt} = NV′′
2 \ {MFstWt}. By the inductive hypothesis, it follows that

W ′′1 | aID(c) | ∞ | NV′′
2 | V′′

1 | 2′′1 →: W ′1 | aID(c) | ∞ | NV′
2 | V′

1 | 2′1
where NV′

1 \ {MFstWt} = NV′
2 \ {MFstWt}. �

Definition C.3 (Subset Property). A judgment aID(2) | 1 ≥ 0 : nat | Ω; Σ `Sig 2 : Cunit a Ω′ has
the subset property iff Ω0

ck ⊆ Σ′ where Σ = ↓Σ′ and Ω = Ω0
ck,Ω

1.

Theorem 6.3 (Fundamental Theorem). If 1 : nat | Ω ` ? : ↑Cunit, then 1 : nat | Ω � ? :
↑Cunit.

Proof. The proof is by induction on the static typing derivation for ? and considering the last
step in the derivation. We only show the aID case as it is the most interesting in this setting. The jit
case is included in the extended TR [21].

Case 1. Suppose that ? = Ckpt[aID, d, `, l] (2); ?′ such that T-P-Ckpt is the last step of the
derivation.

Ω′ | Σ = InitWorldC (Ω; d ; `;l) Sig = {aID(2) | 1 ≥ 0 : nat | Ω′; Σ ` 2 : Cunit}
aID(2) | 1 ≥ 0 : nat | Ω′; Σ `Sig 2 : Cunit a Ω′′

1 : nat | Ω ` ?′ : ↑Cunit Ω′′�{MFstWt} = ∅
1 : nat | Ω ` Ckpt[aID, d, `, l] (2); ?′ : ↑Cunit

(T-P-Ckpt)

By inversion, we know that
(1) Ω′ | Σ = InitWorldC (Ω; d ; `;l)
(2) Sig = {aID(2) | 1 ≥ 0 : nat | Ω′; Σ ` 2 : Cunit}
(3) aID(2) | 1 ≥ 0 : nat | Ω′; Σ `Sig 2 : Cunit a Ω′′

(4) 1 : nat | Ω ` ?′ : ↑Cunit
(5) Ω′′�{MFstWt} = ∅

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

Modal Crash Types for WAR-Aware Intermittent Computing 5:55

By (1) and the definition of InitWorldC , we have that Ω′ = Ω′
1, Σck. Observe that the inductive

hypothesis asserts that 1 : nat | Ω ` ?′ : ↑Cunit implies 1 : nat | Ω � ?′ : ↑Cunit. By applying
the inductive hypothesis to (4), we learn that

1 : nat | Ω � ?′ : ↑Cunit .

To complete the proof, we need to establish

aID(2) | 1 ≥ 0 : nat | Ω′; Σ � 2 ≤ 2 : Cunit .

By definition of logical relation, this is equivalent to showing that 2 is related to itself in the
term interpretation for arbitrary =0,<0, W0, NV0, and V0 where `aID(2)

W0 NV0 | V0 : Ω′ | Σ,
and hence, NV0 = NV′

0,V0ck and range(W0) = dom(NV0). By assumption, ? does not contain
any worlds, , so it follows that 2 does not contain any worlds, . Therefore, it follows by
Definition 4.1 that W0 | aID(c) | =0 | NV0 | V0 | 2 and W0 | aID(c) | ∞ | NV0 | V0 | 2 are
well-formed.
Additionally, by (1), we know that Ω′ = Σ and hence aID(2) | 1 ≥ 0 : nat | Ω′; Σ `Sig 2 :

Cunit a Ω′′ has the subset property (by Definition C.3). It then follows by `aID(2)
W0 NV0 | V0 :

Ω′ | Σ that NV0
0 ⊆ V0 where NV0 = NV0

0 ck,NV1
0.

We need to show that ∀=0:
(W0 | aID(c) | =0 | NV0 | V0 | 2,W0 | aID(c) | ∞ | NV0 | V0 | 2) ∈ EÈCunitÉ<0

Observe that NV0 \ {MFstWt} = NV0 \ {MFstWt} vacuously. Additionally, observe that
NV0 = NV0 \ {Wtn} by the definition of InitWorldC which states that Ω′ contains no Wtn
variables, and `aID(2)

W0 NV0 | V0 : Ω′ | Σ establishes that NV0 contains no Wtn variables due
to well-formedness.
To this end, we instead show a generalized version holds. That is, ∀=0:

(W0 | aID(c) | =0 | NV1 | V0 | 2,W0 | aID(c) | ∞ | NV2 | V0 | 2) ∈ EÈCunitÉ<0

where NV1 \ {MFstWt} = NV2 \ {MFstWt}, A0=64 (W0) = NV1, and NV1 = NV1 \ {Wtn}.
The proof proceeds by induction on<0:
Base Case (<0 = 0). When <0 = 0, the proof is trivial and the desired result follows
immediately by the value interpretation at type Cunit:

(W0 | aID(c) | =0 | NV1 | V0 | 2,W0 | aID(c) | ∞ | NV2 | V0 | 2) ∈ EÈCunitÉ0

Inductive Case (<0 = : + 1 (∃:)). If<0 = : + 1, we need to show that

(W0 | aID(c) | =0 | NV1 | V0 | 2,W0 | aID(c) | ∞ | NV2 | V0 | 2) ∈ EÈCunitÉ:+1

such that
(i) ∃.(W1 | aID(c) | =1 | NV′

1 | V1 | 21) such that W0 | aID(c) | =0 | NV1 | V0 | 2 →∗ W1 |
aID(c) | =1 | NV′

1 | V1 | 21 AND
(ii) ∃.(W2 | aID(c) | ∞ | NV′

2 | V2 | 22) such that W0 | aID(c) | ∞ | NV2 | V0 | 2 →∗ W2 |
aID(c) | ∞ | NV′

2 | V2 | 22 AND
(iii) (W1 | aID(c) | =1 | NV′

1 | V1 | 21, W2 | aID(c) | ∞ | NV′
2 | V2 | 22) ∈ VÈCunitÉ:+1.

By the progress and preservation for commands (Theorems 8.1 and 8.2) applied to (2) and
(3), we know that the first configuration

W0 | aID(c) | =0 | NV1 | V0 | 2
can take multiple steps until it becomes a value configuration that continues to be well-
typed. Observe that in the mode aID(2), NV1 \ {MFstWt, Wtn} = NV′

1 \ {MFstWt, Wtn}.

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

5:56 M. Dotzel et al.

By application of Lemma C.1 to aID(2) | 1 ≥ 0 : nat | Ω′; Σ `Sig 2 : Cunit a Ω′′ and
`aID(2)
W0 NV1 | V0 : Ω′ | Σ, observe that (i) holds. Additionally, NV1 \ {MFstWt, Wtn} =

NV′
1 \ {MFstWt, Wtn} and 3><(NV1) = 3><(NV′

1).
The proof proceeds in two subcases, depending on the value of =′1:
Subcase =′1 = 0. To show (ii), we pick the post-step such that it holds vacuously, i.e.,
W0 | aID(c) | ∞ | NV2 | V0 | 2 →∗ W0 | aID(c) | ∞ | NV2 | V0 | 2 in 0 steps. We then
show (iii) for the post step:

(W ′1 | aID(c) | =′1 | NV′
1 | V′

1 | 2′1, W0 | aID(c) | ∞ | NV2 | V0 | 2) ∈ VÈCunitÉ:+1

By the value interpretation at type Cunit, and because =′1 = 0, this is equivalent to showing

(W ′1 | aID(c) | · | NV′
1 | V′

1 | ↓Y#in(=′1 > 0, ↑ 2′1), W0 | aID(c) | ∞ | NV2 | V0 | 2)
∈ VÈ↓ (nat { ↑ Cunit)É:

At this step we show the above relation holds by its definition:
(iv) PwOff(W ′1, aID(2),NV′

1,V′
1) = W ′′1 | ∅ AND

(v) (W ′′1 | aID(2) | · | NV′
1 | Y#in(=′1 > 0, ↑ 2′1), W0 | aID(c) | ∞ | NV2 | V0 | 2) ∈ VÈnat {

↑ CunitÉ:
To show (vi), we need to show that A0=64 (W ′′1) = 3><(NV′

1) where W ′′1 is the largest
restriction of W ′1 such that this condition holds. Observe that the desired result follows
immediately by the assumptions W0 ⊆ W ′1 and A0=64 (W0) = 3><(NV1), where W ′′1 = W0, and
also 3><(NV1) = 3><(NV′

1) (from above).
Hence, we need to show

(W0 | aID(2) | · | NV′
1 | Y#in(=′1 > 0, ↑ 2′1), W0 | aID(c) | ∞ | NV2 | V0 | 2)

∈ VÈnat { ↑ CunitÉ:

By definition of the value relation at the type nat { ↑ Cunit, this is equivalent to showing
the following:

∀=′1 > 0.(W0 | aID(2) | =′1 | NV′
1 |↑ 2′1, W0 | aID(c) | ∞ | NV2 | V0 | 2)

∈ VÈ↑ CunitÉ:

Fix an arbitrary =1. We need to show that

(W0 | aID(2) | =1 | NV′
1 |↑ 2′1, W0 | aID(c) | ∞ | NV2 | V0 | 2) ∈ VÈ↑ CunitÉ:

By the definition of value relation at the type ↑ Cunit, this is equivalent to showing
(viii) Restore(W0 | aID(2) | NV′

1 | 2′1) = NV′
1 | V′

0 | 2′0 (for some V′
0, 2

′
0) AND

(ix) (W0 | aID(2) | =1 | NV′
1 | V′

0 | 2′0, W0 | aID(c) | ∞ | NV2 | V0 | 2) ∈ EÈCunitÉ:
To show (ix), note that by the definition of Restore, we have that Restore(W0 | aID(2) |
NV′

1 | 2′1) = NV2
RD,MFstWt,V′

0ck,NV3
MFstWt | V′

0 | 2 where NV′
1 = NV2

RD,MFstWt,V′
0ck,NV3

Wtn.
In particular, we need to show that

(W0 | aID(2) | =1 | NV2
RD,MFstWt,V′

0ck,NV3
MFstWt | V′

0 | 2,W0 | aID(c) | ∞ | NV2 | V0 | 2)
∈ EÈCunitÉ: .

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

Modal Crash Types for WAR-Aware Intermittent Computing 5:57

Additionally, observe that the nonvolatile memory NV2
RD,MFstWt,V′

0ck,NV3
MFstWt contains

no Wtns (i.e., NV2
RD,MFstWt,V′

0ck,NV3
MFstWt = NV2

RD,MFstWt,V′
0ck,NV3

MFstWt \ {Wtn}). There-
fore, it follows that

NV2
RD,MFstWt,V′

0ck,NV3
MFstWt \ {MFstWt}

= NV2
RD,MFstWt,V′

0ck,NV3
Wtn \ {MFstWt, Wtn}

= NV′
1 \ {MFstWt, Wtn}

= NV1 \ {MFstWt, Wtn}
= NV1 \ {MFstWt}
= NV2 \ {MFstWt}

Each step holds by an established identity, and the second to last step holds by the assump-
tion NV1 = NV1 \ {Wtn}, and the last step holds by the assumption NV1 \ {MFstWt} =
NV2 \ {MFstWt}. To set up the inductive step, note that NV2

RD,MFstWt,V′
0ck,NV3

MFstWt con-
tains no WtnB . Additionally, observe that

3><(NV2
RD,MFstWt,V′

0ck,NV3
MFstWt) = 3><(NV2

RD,MFstWt,V′
0ck,NV3

Wtn)
= 3><(NV′

1)
= 3><(NV1)
= A0=64 (W0)

Thedesired result follows directly by the inductive hypothesis. Propagating up the cascade,
we learn that since =1 was arbitrary, the value relation holds for all =1. In summary, we
have just shown that

(W0 | aID(2) | =0 | NV1 | V0 | 2,W0 | aID(c) | ∞ | NV2 | V0 | 2) ∈ EÈCunitÉ:+1

where NV1 \ {MFstWt} = NV2 \ {MFstWt}, A0=64 (W0) = NV1, and NV1 = NV1 \ {Wtn}.

Subcase =′1 > 0. Since =′1 > 0 and W ′1 | aID(c) | =′1 | NV′
1 | V′

1 | 2′1 is a value, observe that
2′1 = skip. It follows by Lemma C.2 that

W0 | aID(c) | ∞ | NV2 | V0 | 2 →∗ W ′1 | aID(c) | ∞ | NV′
2 | V′

1 | 2′1

where NV′
1 \ {MFstWt} = NV′

2 \ {MFstWt}.
Now we want to show that

(W ′1 | aID(c) | =′1 | NV′
1 | V′

1 | 2′1, W ′1 | aID(c) | ∞ | NV′
2 | V′

1 | 2′1) ∈ VÈ↓↑ CunitÉ:+1

By the value interpretation at type Cunit and =′1 > 0, we need to show that

(W ′1 | aID(c) | =′1 | NV′
1 | V′

1 | 2′1, W ′1 | aID(c) | ∞ | NV′
2 | V′

1 | 2′1) ∈ VÈ↓↑ unitÉ:

By definition of the value interpretation at the type ↓↑ unit, this is equivalent to showing
(x) Commit(W ′1, aID(2) | NV′

1 | V′
1) = W1 | NV′′

1 ck,V′′
1 AND

(xi) Commit(W ′1, aID(2) | NV′
2 | V′

1) = W2 | NV′′
2 ck,V′′

2 AND
(xii) (W1 | aID(2) | =′1 | NV′′

1 ,V′′
1 | skip, W2 | aID(2) | ∞ | NV′′

2 ,V′′
2 | skip)

∈ VÈ↑ unitÉ:

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

5:58 M. Dotzel et al.

By (x) and (xi), we observe thatW1 = W2. Additionally, it follows by NV′
1\{MFstWt} = NV′

2\
{MFstWt} and the definition of Commit (which asserts that NV′

1 = NV′′
1 RD,Wtn,MFstWt,NV3

ck,
NV′

2 = NV′′
2 RD,Wtn,MFstWt,NV4

ck, 3><(NV3
ck) = 3><(V′′

1), 3><(NV4
ck) = 3><(V′′

2)) that

NV′
1 \ {MFstWt} = NV′

2 \ {MFstWt}
⇒ NV′′

1 RD,Wtn,MFstWt,NV3
ck \ {MFstWt} = NV′′

2 RD,Wtn,MFstWt,NV4
ck \ {MFstWt}

⇒ NV′′
1 RD,Wtn,MFstWt,V′′

1 \ {MFstWt} = NV′′
2 RD,Wtn,MFstWt,V′′

2 \ {MFstWt}

To complete the proof, we need to show that NV′′
1 ,V′′

1 = NV′′
2 ,V′′

2 . To this end, we show
that NV′′

1 RD,Wtn,MFstWt,V′′
1 \ {MFstWt} = NV′′

1 RD,Wtn,MFstWt,V′′
1 and NV′′

2 RD,Wtn,MFstWt,V′′
2 \

{MFstWt} = NV′′
2 RD,Wtn,MFstWt,V′′

2 , i.e., that the final memories have no MFstWt.
It follows by Lemma 8.2 (preservation for commands) applied to

—W0 | aID(c) | =0 | NV1 | V0 | 2 →∗ W ′1 | aID(c) | =′1 | NV′
1 | V′

1 | 2′1,
—aID(2) | 1 ≥ 0 : nat | Ω′; Σ `Sig 2 : Cunit a Ω′′, and
—`aID(2)

W0 NV1 | V0 : Ω′ | Σ
that

Md | 1 : =0C | Ω′′; Σ1 ` skip : ↓↑unit a Ω′′

where ` NV′
1 | V′

1 : Ω
′′ | Σ1. Then, it follows by NV′

1 = NV′′
1 ,NV3

ck, NV′
2 = NV′′

2 ,NV4
ck,

3><(NV3
ck) = 3><(V′′

1), 3><(NV4
ck) = 3><(V′′

2), and the unicity of typing that

` NV′′
1 ,V′′

1 | V′
1 : Ω

′′ | Σ1

Since Ω′′�{MFstWt} = ∅ (i.e., Ω′′ has no MFstWts), it follows that

NV′′
1 RD,Wtn,MFstWt,V′′

1 \ {MFstWt} = NV′′
1 RD,Wtn,MFstWt,V′′

1 .

By similar reasoning, we can show that

NV′′
2 RD,Wtn,MFstWt,V′′

2 \ {MFstWt} = NV′′
2 RD,Wtn,MFstWt,V′′

2 .

Hence, NV′′
1 RD,Wtn,MFstWt,V′′

1 = NV′′
2 RD,Wtn,MFstWt,V′′

2 . Therefore, NV′′
1 ck,V′′

1 = NV′′
2 ck,V′′

2 .
Therefore, we can use the value interpretation at type ↑ unit to prove (xii):

(W1 | aID(2) | =′1 | NV′′
1 ck,V′′

1 | skip, W2 | aID(2) | ∞ | NV′′
2 ck,V′′

2 | skip) ∈ VÈ↑ unitÉ:

which holds by definition of logical relation. This is the last piece we needed in order to
prove the desired result:

(W0 | aID(c) | =0 | NV1 | V0 | 2,W0 | aID(c) | ∞ | NV2 | V0 | 2) ∈ EÈCunitÉ:+1 �

In general, we have that (W0 | aID(c) | =0 | NV0 | V0 | 2,W0 | aID(c) | ∞ | NV0 | V0 | 2) ∈
EÈCunitÉ<0 where `aID(2)

W0 NV0 | V0 : Ω′′, Σck | Σ. Since =0,<0 ≥ 0, W0, NV0, and V0 were
arbitrarily chosen, this result holds for all =,< ≥ 0, W,NV,V. Therefore, it follows by definition
of logical relation that aID(2) | 1 ≥ 0 : nat | Ω′; Σ � 2 ≤ 2 : Cunit. Finally, the desired result
follows by application of P-Ckpt-semantic.

Ω′ | Σ= InitWorldC (Ω; d ; `;l)
aID(2) | 1 ≥ 0 : nat | Ω′; Σ � 2 ≤ 2 : Cunit 1 : nat | Ω � ?′ : ↑Cunit

1 : nat | Ω � Ckpt[aID, d, `, l] (2); ?′ : ↑Cunit
(P-Ckpt-semantic)

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

Modal Crash Types for WAR-Aware Intermittent Computing 5:59

D Adequacy
Definition 6.4 (Idempotency). A triple of a program ? , nonvolatile memory NV, and a mapping W

is idempotent, if every intermittent execution of the program can be simulated by a continuous
execution of it: For all =, =′, j1, j ′1,NV′, ?′, if [j1Â Y] ⊗W | = | NV | ? ⇒ [j ′1Â Y] ⊗W | =′ | NV′ | ?′,
then [j2 Â Y] ⊗ W | ∞ | NV | ? ⇒ [j2 Â Y] ⊗ W | ∞ | NV′ | ?′.

Theorem 6.5 (Adeqacy). Consider 1 : nat | Ω � ? : Cunit, a nonvolatile memory NV, and a
map W such that `jit

W NV | · : Ω | ·. The triple of ? , NV, and W is idempotent.

Proof. The proof is by cases according to the execution mode. We show only the aID case as it
is the most interesting case. The jit case is included in the extended TR [21].

Stepping an Atomic Region. Consider a program of form [j Â Y] ⊗ W | = | NV | Ckpt[aID; d ; `;l]
(20);?′ that can take a step using the D-P-Seq rule to [j ′′ Â Y] ⊗ W | =′ | NV1 | ?′. By inversion on
the D-P-Ckpt rule,

= > 0 InitWorld3 (NV; d ; `;l ;W) = NV0,+0
[j Â Y] ⊗ W | aID(20) | = | NV0 | V0 | 20 ⇒∗ [j ′′ Â Y] ⊗ W ′ | aID(20) | =′ | NV′ | V′ | skip

=′ > 0 NV1 = FinWorld3 (NV′;V′)
[j Â Y] ⊗ W | = | NV | Ckpt[aID; d ; `;l] (20);?′ ⇒? [j ′′ Â Y] ⊗ W | =′ | NV1 | ?′

(D-P-Ckpt)

we learn that

—= > 0
— InitWorld3 (NV; d ; `;l ;W) = NV0,+0
— [j Â Y] ⊗ W | aID(20) | = | NV0 | V0 | 20 ⇒∗ [j ′′ Â Y] ⊗ W ′ | aID(20) | =′ | NV′ | V′ | skip
—=′ > 0
—NV1 = FinWorld3 (NV′;V′)

Our goal is to simulate this execution in a continuous setting. In particular, we need to find a
continuous execution such that [jÂY] ⊗W | aID(20) | ∞ | NV0 | V0 | 20 ⇒∗ [j Â Y] ⊗W ′ | aID(20) |
∞ | NV′

2 | V′
2 | skip, where NV1 = FinWorld3 (NV′

2;V′
2). To this end, we invert the assumption

1 : nat | Ω � Ckpt[aID; d ; `;l] (20); ?′ :↑ Cunit via P-Ckpt-semantic,

Ω′ | Σ= InitWorldC (Ω; d ; `;l)
aID(20) | 1 ≥ 0 : nat | Ω′; Σ � 20 ≤ 20 : Cunit 1 : nat | Ω � ?′ : ↑Cunit

1 : nat | Ω � Ckpt[aID; d ; `;l] (20);?′ : ↑Cunit
(P-Ckpt-semantic)

we learn that

(i) Ω′ | Σ= InitWorldC (Ω; d ; `;l)
(ii) aID(20) | 1 ≥ 0 : nat | Ω′; Σ � 20 ≤ 20 : Cunit
(iii) 1 : nat | Ω � ?′ : ↑Cunit

By definition of logical relation applied to (ii), we have that ∀=1,<1 ≥ 0.∀W,NV,V s.t. `aID(20)
W

NV | V : Ω | Σ and (W | aID(20) | =1 | NV | V | 20, W | aID(20) | ∞ | NV | V | 20) ∈ EÈCunitÉ<1 .
By instantiating the memories accordingly, and the index<1 with the number of tries< + 1

(where< is the number of crashes), we have

(W | aID(20) | = | NV0 | V0 | 20, W | aID(20) | ∞ | NV0 | V0 | 20) ∈ EÈCunitÉ<+1

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

5:60 M. Dotzel et al.

To get our result, we first prove the following generalized statement: if

— [j Â Y] ⊗ W1 | aID(20) | =1 | NV1 | V1 | 21 ⇒∗ [j ′ Â Y] ⊗ W ′ | aID(20) | =′1 | NV′ | V′ | skip
in< crashes and

— (W1 | aID(20) | =1 | NV1 | V1 | 21, W2 | aID(20) | ∞ | NV2 | V2 | 22) ∈ EÈCunitÉ<+1

then for all energy streams j0, we have [j0 Â Y] ⊗ W2 | aID(20) | ∞ | NV2 | V2 | 22 ⇒∗

[j0 Â Y] ⊗W ′′2 | aID(20) | ∞ | NV′′
2 | V′′

2 | skip, where FinWorld3 (NV′;V′) = FinWorld3 (NV′′
2 ;V′′

2)
The proof proceeds by induction on the number of crashes:

Base Case:< = 0 (# tries = 1). If< = 0, then it follows by the term interpretation at type
Cunit,

(1) ∃(W ′′1 | aID(20) | =′ | NV′
1 | V′

1 | 2′1) s.t. W1 | aID(20) | = | NV1 | V1 | 21 →∗ W ′′1 | aID(20) |
=′ | NV′

1 | V′
1 | 2′1 AND

(2) ∃(W ′′2 | aID(20) | ∞ | NV′
2 | V′

2 | 2′2) s.t. W2 | aID(20) | ∞ | NV2 | V2 | 22 →∗ W ′′2 | aID(20) |
∞ | NV′

2 | V′
2 | 2′2 AND

(3) (W ′′1 | aID(20) | =′ | NV′
1 | V′

1 | 2′1, W ′′2 | aID(20) | ∞ | NV′
2 | V′

2 | 2′2) ∈ VÈCunitÉ1
The number of crashes is 0, so =′ > 0 and the first configuration steps to completion via
D-step where NV′

1 = NV′ and V′
1 = V′ and W ′′1 = W ′:

[j Â Y] ⊗ W1 | aID(20) | = | NV1 | V1 | 21 ⇒∗ [j Â Y] ⊗ W ′′1 | aID(20) | =′ | NV′
1 | V′

1 | skip
Applying D-Step to (2), we know that

[j0 Â Y] ⊗ W2 | aID(20) | ∞ | NV2 | V2 | 22 ⇒∗ [j0 Â Y] ⊗ W ′′2 | aID(20) | ∞ | NV′
2 | V′

2 | 2′2
and by (3) and =′ > 0, we get that the post steps are related by the value interpretation at
type ↓↑ unit. This means that 2′2 = skip and we have

[j0 Â Y] ⊗ W2 | aID(20) | ∞ | NV2 | V2 | 22 ⇒∗ [j0 Â Y] ⊗ W ′′2 | aID(20) | ∞ | NV′
2 | V′

2 | skip
and

(W ′′1 | aID(20) | =′ | NV′
1 | V′

1 | skip, W ′′2 | aID(20) | ∞ | NV′
2 | V′

2 | skip) ∈ VÈ↓↑ unitÉ0

It then follows that
(1) Commit(W ′′1 , aID(20),NV′

1,V′
1) = W ′ | NV′

ck,V′ where W ′ ⊆ W ′′1 , NV′
1 = NV′

RD,Wtn,MFstWt,

NV′
0ck, V′

1 = V′
0,V′, 3><(V′) = 3><(NV′

0), A0=64 (W ′) = 3><(NV′
1) ∪ 3><(V′).

(2) Commit(W ′′2 , aID(20),NV′
2,V′

2) = W2 | NV2
ck,V2 where W2 ⊆ W ′′2 , NV′

2 = NV2
RD,Wtn,MFstWt,

NV2
0ck, V′

2 = V2
0,V2, 3><(V2) = 3><(NV2

0), A0=64 (W2) = 3><(NV′
2) ∪ 3><(V2).

(3) (W ′ | aID(20) | =′ | NV′
ck,V′ | skip, W2 | aID(20) | ∞ | NV2

ck,V2 | skip) ∈ VÈ↑ unitÉ0.
It follows by the value interpretation at type ↑ unit that NV′,V′ = NV2,V2. We observe
that by definition, the Commit function copies the values of the checkpointed volatile
memory locations into the nonvolatile memory and changes the qualifiers of all other
locations in the nonvolatile memory to ck. This corresponds to the semantics of the
FinWorld3 function, and hence it follows by definition that FinWorld3 (NV′

1;V′
1) = NV′,V′

and FinWorld3 (NV′
2;V′

2) = NV2,V2.
Therefore, we have

[j0 Â Y] ⊗ W2 | aID(20) | ∞ | NV2 | V2 | 22 ⇒∗ [j0 Â Y] ⊗ W ′′2 | aID(20) | ∞ | NV′
2 | V′

2 | skip
where FinWorld3 (NV′

1;V′
1) = FinWorld3 (NV′

2;V′
2), and the proof of this subcase is complete.

Inductive Case:< = : + 1(∃:) (# tries = : + 2). By the term interpretation at type Cunit, we
have

(i) ∃W ′1 | aID(20) | =′1 | NV′
1 | V′

1 | 2′1 s.t. W1 | aID(20) | = | NV1 | V1 | 21 →∗ W ′1 | aID(20) | =′1 |
NV′

1 | V′
1 | 2′1

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

Modal Crash Types for WAR-Aware Intermittent Computing 5:61

(ii) ∃W ′2 | aID(20) | ∞ | NV′
2 | V′

2 | 2′2 s.t. W2 | aID(20) | ∞ | NV2 | V2 | 22 →∗ W ′2 | aID(20) | ∞ |
NV′

2 | V′
2 | 2′2

(iii) (W ′1 | aID(20) | =′1 | NV′
1 | V′

1 | 2′1, W ′2 | aID(20) | ∞ | NV′
2 | V′

2 | 2′2) ∈ VÈCunitÉ:+2
From (i), we step the first configuration until it becomes a value. It follows by the rule D-step
that

[j Â Y] ⊗ W | aID(20) | = | NV1 | V1 | 21 ⇒∗ [j Â Y] ⊗ W ′1 | aID(20) | =′1 | NV′
1 | V′

1 | 2′1
Since there are< > 0 crashes, we know that =′1 = 0. By (ii), we step the second configuration
via D-step:

[j0 Â Y] ⊗ W2 | aID(20) | ∞ | NV2 | V2 | 22 ⇒∗ [j0 Â Y] ⊗ W ′2 | aID(20) | ∞ | NV′
2 | V′

2 | 2′2
and by (iii), we have

(W ′1 | aID(20) | =′1 | NV′
1 | V′

1 | 2′1, W ′2 | aID(20) | ∞ | NV′
2 | V′

2 | 2′2) ∈ VÈCunitÉ:+2

By application of D-Crash, we have

[j Â Y] ⊗ W ′1 | aID(20) | 0 | NV′
1 | V′

1 | 2′1
⇒ [j Â Y] ⊗ W ′1 | aID(20) | · | NV′

1 | V′
1 |↓ Y#in(1 > 0;↑ 2′1)

By the value interpretation at type Cunit, observe that the stepped configuration continues to
be related to the second configuration:

(W ′1 | aID(20) | · | NV′
1 | V′

1 |↓ Y#in(1 > 0;↑ 2′1), W ′2 | aID(20) | ∞ | NV′
2 | V′

2 | 2′2)
∈ VÈ↓ (nat { ↑ Cunit)É:+1

By D-S-aID, for W1 ⊆ W ′1 such that A0=64 (W1) = 3><(NV′
1), we have

[j Â Y] ⊗ W ′1 | aID(20) | · | NV′
1 | V′

1 |↓ Y#in(1 > 0;↑ 2′1)
⇒ [j Â Y] ⊗ W1 | aID(20) | · | NV′

1 | Y#in(1 > 0;↑ 2′1)

Note that the semantics of D-S-aID match the semantics of the PwOff function as it drops
the volatile memory locations V′

1 just as the PwOff function does not checkpoint any volatile
memory locations, i.e., PwOff(W ′1, aID(20),NV′

1,V′
1) = W1 | ∅. By the value interpreta-

tion at type ↓ (nat { ↑ Cunit), and the definition of PwOff in the atomic case, we have
PwOff(W ′1, aID(20),
NV′

1,V′
1) = W1 | ∅, and thus the stepped configuration continues to be related to the second

configuration:

(W1 | aID(20) | · | NV′
1 | Y#in(1 > 0;↑ 2′1), W ′2 | aID(20) | ∞ | NV′

2 | V′
2 | 2′2)

∈ VÈnat { ↑ CunitÉ:+1

By stepping the first configuration according to D-charge, we have for some =′′ > 0 such
that j = =′′ :: j ′:

[j Â Y] ⊗ W1 | aID(20) | · | NV′
1 | Y#in(1 > 0;↑ 2′1)

⇒ [j ′ Â Y] ⊗ W1 | aID(20) | =′′ | NV′
1 |↑ 2′1

By the value interpretation at type nat {↑ Cunit, observe that the stepped configuration
remains related to the second configuration for =′′ > 0:

(W1 | aID(20) | =′′ | NV′
1 |↑ 2′1, W ′2 | aID(20) | ∞ | NV′

2 | V′
2 | 2′2) ∈ VÈ↑ CunitÉ:+1

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

5:62 M. Dotzel et al.

Stepping the first configuration via D-restore-aID, we have

[j Â Y] ⊗ W1 | aID(20) | =′′ | NV′
1 |↑ 2′1 ⇒ [j Â Y] ⊗ W1 | aID(20) | =′′ |

NV′
RD,MFstWt,NV′′

ck,NV3
MFstWt | · | 20

where NV′
1 = NV′

RD,MFstWt,NV′′
ck,NV3

Wtn.
By the value interpretation at type ↑ Cunit, the first and second configurations remain related:

(W1 | aID(20) | =′′ | NV′
RD,MFstWt,NV′′

ck,NV3
MFstWt | ·

| 20, W ′2 | aID(20) | ∞ | NV′
2 | V′

2 | 2′2) ∈ EÈCunitÉ:+1

since
—Restore(W1, aID(20),NV′

1, 2
′
1) = NV′

RD,MFstWt,NV′′
ck,NV3

MFstWt | · | 20 and
—NV′

1 = NV′
RD,MFstWt,NV′′

ck,NV3
Wtn

By assumption,

[j Â Y] ⊗ W1 | aID(20) | =′′ | NV′
1 | · | 20 ⇒∗ [j ′′ Â Y] ⊗ W ′ | aID(20) | =′ | NV′ | V′ | skip

in : crashes.
By induction hypothesis, we get

[j0 Â Y] ⊗ W ′2 | aID(20) | ∞ | NV′
2 | V′

2 | 2′2 ⇒∗ [j0 Â Y] ⊗ W ′′2 | aID(20) | =′ | NV′′
2 | V′′

2 | skip
such that FinWorld3 (NV′;V′) = FinWorld3 (NV′′

2 ;V′′
2). This combined with

[j0 Â Y] ⊗ W2 | aID(20) | ∞ | NV2 | V2 | 22 ⇒∗ [j0 Â Y] ⊗ W ′2 | aID(20) | ∞ | NV′
2 | V′

2 | 2′2
gives us

[j0 Â Y] ⊗ W2 | aID(20) | ∞ | NV2 | V2 | 22 ⇒∗ [j0 Â Y] ⊗ W ′′2 | aID(20) | =′ | NV′′
2 | V′′

2 | skip
which completes the proof of this subcase.

With that established, we can apply the generalized statement on assumptions

(W | aID(20) | = | NV0 | V0 | 20, W | aID(20) | ∞ | NV0 | V0 | 20) ∈ EÈCunitÉ<+1

and [j Â Y] ⊗W | aID(20) | = | NV0 | V0 | 20 ⇒∗ [j ′ Â Y] ⊗W ′ | aID(20) | =′ | NV′ | V′ | skip to get
[j Â Y] ⊗ W | aID(20) | ∞ | NV0 | V0 | 20 ⇒∗ [j Â Y] ⊗ W ′′ | aID(20) | ∞ | NV′′ | V′′ | skip, where
FinWorld3 (NV′;V′) = FinWorld3 (NV′′;V′′). and apply D-P-Ckpt rule to complete the proof of
this case. �

E Preservation for Closed Configurations
Theorem E.1 (Preservation for Programs). Consider 1 : nat | Ω ` ? : ↑Cunit, a nonvolatile

memory NV and a bijective map W that matches qualifiers and types from variables in Ω to locations
in NV. For any =:nat ≥ 0, if we have [j Â Y] ⊗ W | = | NV | ? ⇒? [j ′ Â Y] ⊗ W ′ | =′ | NV′ | ?′,
then 1 : nat | Ω ` ?′ : ↑Cunit, with W remaining a bijective map from Ω to NV′.

Proof. By a structural induction on the typing derivation, and case distinction on the step. We
include the full proof in the extended TR [21]. �

Received 9 April 2024; revised 21 September 2024; accepted 15 January 2025

ACM Transactions on Programming Languages and Systems, Vol. 47, No. 2, Article 5. Publication date: April 2025.

	Abstract
	1 Introduction
	2 Background
	2.1 Intermittent Computing on EHDs
	2.2 WAR Dependencies
	2.3 Correct Atomic Region Execution

	3 Key Ideas of Crash Types
	3.1 Modal Store Types
	3.2 Crash Types
	3.3 Independence Principle for Typing Intermittent Execution

	4 A Basic Calculus for Intermittent Execution
	4.1 Syntax
	4.2 Operational Semantics

	5 Static Typing
	5.1 Store Typing

	6 Logical Relation for Intermittent Execution
	6.1 Semantic Typing via a Logical Relation

	7 JIT Region Execution
	7.1 Example
	7.2 Operational Semantics
	7.3 Static Typing
	7.4 Store Typing
	7.5 Logical Relation

	8 Metatheory
	8.1 Statically Well-Typed Programs Are Type Safe
	8.2 Statically Well-Typed Programs Are Semantically Well-Typed
	8.3 Semantically Well-Typed Programs Are Idempotent

	9 More General Policies
	10 Related Work
	11 Discussion and Future Work
	12 Conclusion
	References
	A Store Typing
	B Progress and Preservation for Open Configurations
	C Fundamental Theorem
	D Adequacy
	E Preservation for Closed Configurations

