
Towards a Formal Foundation
of Intermittent Computing

Milijana Surbatovich

Brandon Lucia, Limin Jia

1

Batteryless Energy-harvesting Devices (EHDs)
enable computing in inaccessible environments

Maintenance expensive
or impossible

x

x := in()

y := x

z := y +5

Batteryless EHDs

x

x := in()

y := x

z := y +5

2

Intermittent execution in energy harvesting devices

Energy Buffer

Harvester

Powers on as

energy is available

Hardware platform

3

Intermittent execution in energy harvesting devices

Energy Buffer

Harvester

Hardware platform

Volatile state clears,

persistent state remains

Powers off at arbitrary

program locations

4

Preserving progress by saving state

B
Power fail

A

B

Save execution context

at checkpoints

Restore saved context

after reboots

5

Systems must re-execute regions correctly

x := y

y := 5

x := y

y := 5

Must save

original value

Write-After-Read (WAR)

Incorrect dataflow

Alpaca

Adds value of non-volatile
variables with a WAR dependence
to the saved execution context

Others: DINO, Ratchet,

Chinchilla

K. Maeng, A. Colin, B. Lucia. Alpaca: Intermittent
Execution without Checkpoints. OOPSLA ‘17

6

Input re-executions are not handled correctly

x := input()

If x > 5:

Incorrect

behaviour!

y := 1

Else z := 1

x := input()

If x > 5:

y := 1

Else z := 1

Different on

re-execution

Repeated-Input-Operation (RIO)

M. Surbatovich, L. Jia, B. Lucia. I/O Dependent
Idempotence Bugs in Intermittent Systems. OOPSLA ‘19

Detects and reports input-
dependent branches that write to
different sets of variables

IBIS

7

The need to formalize intermittent execution

No formal spec in existing works → systems subtly incorrect

Our correctness definitions address both WAR and RIO problems, which
no existing work has done

8

Outline

• Challenge of intermittence

• Memory consistency correctness definition

• Memory relations

• Correct checkpoint set

• Evaluation and conclusion

9

Correct intermittent execution

Continuous execution specifies correct program behaviour

≈B

A

B

A

B

≈

≈

≈
Intermittent

Execution

Continuous

Execution

≈

10

Equivalence: memory reads and memory state at checkpoints

B

A

B

Reboots don’t restore to

the exact same state

B

A

Inputs cause different

paths to be taken

BB’

Difficulty of reasoning about equivalence

≈B

A

B

A

B

Intermittent

Execution

Continuous

Execution

11

Memory can be different at many points

0 checkpoint(y,z)
1 t = temp();
2 if t >= 5
3 then x := 6;
4 y := 7;
5 else x := z;
6 z := 8;

Intermittent execution

t x y z
10 2 3

𝝉 𝐎
0 𝑐𝑘𝑝𝑡

1𝟓 2 31 𝑖𝑛(1)

𝟔5 2 32 ⋅

65 𝟕 33 ⋅
Power fail

10 2 3 ⋅𝟔𝟓 𝟐 37 𝑟𝑏𝑡

14 2 3 𝑖𝑛(8)𝟔𝟒 𝟐 38 𝑖𝑛(8)

34 2 3 𝑟𝑑 𝑧 3𝟑𝟒 𝟐 39 𝑟𝑑 𝑧 3

𝟑𝟒 𝟐 𝟖 ⋅𝟑𝟒 𝟐 𝟖10 ⋅

t x y z

Continuous execution

𝐎

Time

E
x
e
c
u

ti
o

n
 T

im
e

Not same state as

at checkpoint

How different can memory get that the differences still resolve?12

Outline

• Challenge of intermittence

• Memory consistency correctness definition

• Memory relations

• Correct checkpoint set

• Evaluation and conclusion

13

Any differences must resolve on re-execution

t x y z
10 2 3

1𝟓 2 3

𝟔5 2 3

65 𝟕 3

10 2 3𝟔𝟓 𝟐 3

14 2 3𝟔𝟒 𝟐 3

34 2 3𝟑𝟒 𝟐 3

𝟑𝟒 𝟐 𝟖𝟑𝟒 𝟐 𝟖

t x y z

Intermittent Continuous

Differing locations

must be written to

before being read

Written values must

be the same

Power fail

14

Any differences must resolve on re-execution

t x y z
10 2 3

1𝟓 2 3

𝟔5 2 3

65 𝟕 3

10 2 3𝟔𝟓 𝟐 3

14 2 3𝟔𝟒 𝟐 3

34 2 3𝟑𝟒 𝟐 3

𝟑𝟒 𝟐 𝟖𝟑𝟒 𝟐 𝟖

t x y z

Intermittent Continuous

Differing locations

must be written to

before being read

Written values must

be the same

CheckpointedSafe
What set of

variables is safe?

t x y z

All Variables

Power fail

15

Must-first-write set

The must-first-write set – must-write variables with no preceding read

0 checkpoint(y,z)
1 t = temp();
2 if t >= 5
3 then x := 6;
4 y := 7;
5 else x := z;
6 z := 8;

Any execution writes to these variables before reading them

16

Defining allowable differences

Relation 1: Differing locations
must be in the MstFstWt set or
the checkpoint set

Relation 2: Differing locations
must be in the MstFstWt set and
cannot have been written to yet.

10 2 3

14 2 3

34 2 3

𝟑𝟒 𝟐 𝟖

Continuous

10 2 3

t x y z

Always writes to

MstFtWt + checkpoint

Each write resolves

differences

t x y z
10 2 3

1𝟓 2 3

𝟔5 2 3

65 𝟕 3

𝟔𝟓 𝟐 3

𝟔𝟒 𝟐 3

𝟑𝟒 𝟐 3

𝟑𝟒 𝟐 𝟖

Intermittent

Final state matches

Power fail

17

Outline

• Challenge of intermittence

• Memory consistency correctness definition

• Memory relations

• Correct checkpoint set

• Evaluation and conclusion

18

Only checkpointing WAR variables is incorrect

Exclusive May-Write set:

may-writes minus must-write

Must-first-

write

t x y z
10 2 3

𝟑𝟒 𝟐 𝟖

⋯

Checkpoint

Set
Must be Checkpointed

0 checkpoint(y,z)
1 t = temp();
2 if t >= 5
3 then x := 6;
4 y := 7;
5 else x := z;
6 z := 8;

Safe

Read Only MstFstWt

WAR

Conditionally

written due to

inputs

t

x

EMW y

z

19

Collecting Exclusive May-Writes

0 checkpoint(y,z)
1 t = temp();
2 if t >= 5
3 then x := 6;
4 y := 7;
5 else x := z;
6 z := 8;

if true

if false

𝐭 𝐱 𝐲

𝐭 𝐱 𝐳

Mst-Wt EMW

Only inputs can cause a different path to execute after reboot

Use static taint analysis to identify input-dependent branches

Must be CheckpointedSafe

Read Only MstFstWt

WAR

EMW

t

x

y

z

Taint-optimized EMW

20

Correctness Theorem

If all unsafe WAR and EMW variables are in the checkpointed set,

then an intermittent program will execute correctly

Checkpoint Set

≈B

A

B

A

B

Intermittent

Execution

Continuous

Execution

Read

Only
MstFst

Wt

WAR

EMW

Safe

21

Implementation

Compiler pass implemented in LLVM

Two versions: taint-optimized EMW and basic EMW

Analysis added to Alpaca, which tracks WAR

More in paper…

22

Outline

• Challenge of intermittence

• Memory consistency correctness definition

• Memory relations

• Collecting the correct checkpoint set

• Evaluation and conclusion

23

Goal of evaluation

Show that Modifying Alpaca with EMW is practically efficient

1) Low runtime overhead

2) Low programmer burden x

x := in()

y := x

z := y +5

x

x := in()

y := x

z := y +5

24

EMW has little performance penalty

Low mean

overhead

Adds spurious

locations to

checkpoint

Had input-dep

branches

Experiments run on benchmarks from prior work on real hardware

25

EMW needs little to no programmer effort

Low mean

overhead

Adds spurious

locations to

checkpoint

Had input-dep

branches

Manual Fix, could still

be incorrect

No effort, higher

overhead

Specify input functions,

little overhead

M. Surbatovich, L. Jia, B. Lucia. I/O Dependent
Idempotence Bugs in Intermittent Systems. OOPSLA ‘1926

More in paper

Proving equivalence between execution models

Collection and checking algorithms

Implementation and experiment details

Application Discussion

27

Connection to related work

Persistent Memory Models Crash Consistency

This work

Explicitly considers non-deterministic inputs

Defines correctness conditions for intermittent executions

Persist vs execution order

Multi-threaded executions

ISA persistency semantics

[Raad et al., Israelevitz et al., Pelley et al.]

Equivalence of crashy execution to non-crashy

Automated proof tools:

Yggdrasil, CHL

Fault Tolerant Resource Reasoning

Crash Consistency through Reachability

[Bornholt et al., Chen et al., Ntzik et al., Koskinen and Yang]

28

Summary

Intermittent computing systems need to be correct and reliable

We develop a framework and give a formal definition of correctness

We apply the framework to reason about equivalence and develop a
compiler analysis to make existing systems correct

29

Towards a Formal Foundation
of Intermittent Computing

Milijana Surbatovich

Brandon Lucia, Limin Jia

30

