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Batteryless Energy-harvesting Devices (EHDs) 
enable computing in inaccessible environments

Maintenance expensive 
or impossible

x

x := in()

y := x

z := y +5

Batteryless EHDs

x

x := in()

y := x

z := y +5
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Intermittent execution in energy harvesting devices

Energy Buffer

Harvester

Powers on as 

energy is available

Hardware platform
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Intermittent execution in energy harvesting devices

Energy Buffer

Harvester

Hardware platform

Volatile state clears, 

persistent state remains

Powers off at arbitrary 

program locations
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Preserving progress by saving state

B
Power fail

A

B

Save execution context 

at checkpoints

Restore saved context 

after reboots
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Systems must re-execute regions correctly

x := y

y := 5

x := y

y := 5

Must save 

original value

Write-After-Read (WAR)

Incorrect dataflow

Alpaca

Adds value of non-volatile 
variables with a WAR dependence 
to the saved execution context

Others: DINO, Ratchet, 

Chinchilla

K. Maeng, A. Colin, B. Lucia. Alpaca: Intermittent 
Execution without Checkpoints. OOPSLA ‘17
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Input re-executions are not handled correctly

x := input()

If x > 5:

Incorrect 

behaviour!

y := 1

Else z := 1

x := input()

If x > 5:

y := 1

Else z := 1

Different on 

re-execution

Repeated-Input-Operation (RIO)

M. Surbatovich, L. Jia, B. Lucia. I/O Dependent 
Idempotence Bugs in Intermittent Systems. OOPSLA ‘19

Detects and reports input-
dependent branches that write to 
different sets of variables

IBIS

7



The need to formalize intermittent execution 

No formal spec in existing works → systems subtly incorrect

Our correctness definitions address both WAR and RIO problems, which 
no existing work has done
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Outline

• Challenge of intermittence

• Memory consistency correctness definition

• Memory relations

• Correct checkpoint set

• Evaluation and conclusion
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Correct intermittent execution

Continuous execution specifies correct program behaviour

≈B

A

B

A

B

≈

≈

≈
Intermittent 

Execution

Continuous

Execution

≈
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Equivalence: memory reads and memory state at checkpoints

B

A

B

Reboots don’t restore to 

the exact same state  

B

A

Inputs cause different 

paths to be taken

BB’

Difficulty of reasoning about equivalence

≈B

A

B

A

B

Intermittent 

Execution

Continuous

Execution
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Memory can be different at many points

0   checkpoint(y,z)
1   t = temp(); 
2   if t >= 5
3   then x := 6;
4            y := 7; 
5   else x := z; 
6           z := 8; 

Intermittent execution

t   x   y   z
10 2 3

𝝉 𝐎
0 𝑐𝑘𝑝𝑡

1𝟓 2 31 𝑖𝑛(1)

𝟔5 2 32 ⋅

65 𝟕 33 ⋅
Power fail

10 2 3 ⋅𝟔𝟓 𝟐 37 𝑟𝑏𝑡

14 2 3 𝑖𝑛(8)𝟔𝟒 𝟐 38 𝑖𝑛(8)

34 2 3 𝑟𝑑 𝑧 3𝟑𝟒 𝟐 39 𝑟𝑑 𝑧 3

𝟑𝟒 𝟐 𝟖 ⋅𝟑𝟒 𝟐 𝟖10 ⋅

t   x   y   z

Continuous execution

𝐎

Time

E
x
e
c
u

ti
o

n
 T

im
e

Not same state as 

at checkpoint

How different can memory get that the differences still resolve?12



Outline

• Challenge of intermittence

• Memory consistency correctness definition

• Memory relations

• Correct checkpoint set

• Evaluation and conclusion
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Any differences must resolve on re-execution

t   x   y   z
10 2 3

1𝟓 2 3

𝟔5 2 3

65 𝟕 3

10 2 3𝟔𝟓 𝟐 3

14 2 3𝟔𝟒 𝟐 3

34 2 3𝟑𝟒 𝟐 3

𝟑𝟒 𝟐 𝟖𝟑𝟒 𝟐 𝟖

t   x   y   z

Intermittent Continuous

Differing locations 

must be written to 

before being read

Written values must 

be the same

Power fail
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Any differences must resolve on re-execution

t   x   y   z
10 2 3

1𝟓 2 3

𝟔5 2 3

65 𝟕 3

10 2 3𝟔𝟓 𝟐 3

14 2 3𝟔𝟒 𝟐 3

34 2 3𝟑𝟒 𝟐 3

𝟑𝟒 𝟐 𝟖𝟑𝟒 𝟐 𝟖

t   x   y   z

Intermittent Continuous

Differing locations 

must be written to 

before being read

Written values must 

be the same

CheckpointedSafe
What set of  

variables is safe?

t   x         y   z

All Variables

Power fail
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Must-first-write set

The must-first-write set – must-write variables with no preceding read

0   checkpoint(y,z)
1   t = temp(); 
2   if t >= 5
3   then x := 6;
4            y := 7; 
5   else x := z; 
6           z := 8; 

Any execution writes to these variables before reading them 
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Defining allowable differences

Relation 1: Differing locations 
must be in the MstFstWt set or 
the checkpoint set

Relation 2: Differing locations 
must be in the MstFstWt set and 
cannot have been written to yet.

10 2 3

14 2 3

34 2 3

𝟑𝟒 𝟐 𝟖

Continuous

10 2 3

t   x y   z

Always writes to 

MstFtWt + checkpoint

Each write resolves 

differences

t   x y   z
10 2 3

1𝟓 2 3

𝟔5 2 3

65 𝟕 3

𝟔𝟓 𝟐 3

𝟔𝟒 𝟐 3

𝟑𝟒 𝟐 3

𝟑𝟒 𝟐 𝟖

Intermittent

Final state matches

Power fail
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Outline

• Challenge of intermittence

• Memory consistency correctness definition

• Memory relations

• Correct checkpoint set

• Evaluation and conclusion
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Only checkpointing WAR variables is incorrect

Exclusive May-Write set: 

may-writes minus must-write

Must-first-

write

t   x y   z
10 2 3

𝟑𝟒 𝟐 𝟖

⋯

Checkpoint 

Set
Must be Checkpointed

0   checkpoint(y,z)
1   t = temp(); 
2   if t >= 5
3   then x := 6;
4            y := 7; 
5   else x := z; 
6           z := 8; 

Safe

Read Only MstFstWt

WAR

Conditionally 

written due to 

inputs

t   

x

EMW y   

z
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Collecting Exclusive May-Writes

0   checkpoint(y,z)
1   t = temp(); 
2   if t >= 5
3   then x := 6;
4            y := 7; 
5   else x := z; 
6           z := 8; 

if true

if false

𝐭 𝐱 𝐲

𝐭 𝐱 𝐳

Mst-Wt EMW

Only inputs can cause a different path to execute after reboot

Use static taint analysis to identify input-dependent branches

Must be CheckpointedSafe

Read Only MstFstWt

WAR

EMW

t   

x

y   

z

Taint-optimized EMW
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Correctness Theorem

If all unsafe WAR and EMW variables are in the checkpointed set,

then an intermittent program will execute correctly

Checkpoint Set

≈B

A

B

A

B

Intermittent 

Execution

Continuous

Execution

Read 

Only
MstFst

Wt

WAR

EMW

Safe
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Implementation

Compiler pass implemented in LLVM

Two versions: taint-optimized EMW and basic EMW

Analysis added to Alpaca, which tracks WAR

More in paper…
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Outline

• Challenge of intermittence

• Memory consistency correctness definition

• Memory relations

• Collecting the correct checkpoint set

• Evaluation and conclusion

23



Goal of evaluation

Show that Modifying Alpaca with EMW is practically efficient

1) Low runtime overhead

2) Low programmer burden x

x := in()

y := x

z := y +5

x

x := in()

y := x

z := y +5
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EMW has little performance penalty

Low mean 

overhead

Adds spurious 

locations to 

checkpoint

Had input-dep 

branches

Experiments run on benchmarks from prior work on real hardware
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EMW needs little to no programmer effort

Low mean 

overhead

Adds spurious 

locations to 

checkpoint

Had input-dep 

branches

Manual Fix, could still 

be incorrect

No effort, higher 

overhead

Specify input functions, 

little overhead

M. Surbatovich, L. Jia, B. Lucia. I/O Dependent 
Idempotence Bugs in Intermittent Systems. OOPSLA ‘1926



More in paper

Proving equivalence between execution models

Collection and checking algorithms

Implementation and experiment details

Application Discussion
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Connection to related work

Persistent Memory Models Crash Consistency 

This work

Explicitly considers non-deterministic inputs

Defines correctness conditions for intermittent executions

Persist vs execution order

Multi-threaded executions

ISA persistency semantics

[Raad et al., Israelevitz et al., Pelley et al.]

Equivalence of crashy execution to non-crashy

Automated proof tools:

Yggdrasil, CHL 

Fault Tolerant Resource Reasoning

Crash Consistency through Reachability 

[Bornholt et al., Chen et al., Ntzik et al., Koskinen and Yang]
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Summary

Intermittent computing systems need to be correct and reliable

We develop a framework and give a formal definition of correctness

We apply the framework to reason about equivalence and develop a 
compiler analysis to make existing systems correct
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