
183

I/O Dependent Idempotence Bugs in Intermittent Systems

MILIJANA SURBATOVICH, Carnegie Mellon University, USA

LIMIN JIA, Carnegie Mellon University, USA

BRANDON LUCIA, Carnegie Mellon University, USA

Intermittently-powered, energy-harvesting devices operate on energy collected from their environment and

must operate intermittently as energy is available. Runtime systems for such devices often rely on checkpoints

or redo-logs to save execution state between power cycles, causing arbitrary code regions to re-execute on

reboot. Any non-idempotent program behaviorÐbehavior that can change on each executionÐcan lead to

incorrect results.

This work investigates non-idempotent behavior caused by repeating I/O operations, not addressed by prior

work. If such operations affect a control statement or address of a memory update, they can cause programs

to take different paths or write to different memory locations on re-executions, resulting in inconsistent

memory states. We provide the first characterization of input-dependent idempotence bugs and develop IBIS-S,

a program analysis tool for detecting such bugs at compile time, and IBIS-D, a dynamic information flow

tracker to detect bugs at runtime. These tools use taint propagation to determine the reach of input. IBIS-S

searches for code patterns leading to inconsistent memory updates, while IBIS-D detects concrete memory

inconsistencies. We evaluate IBIS on embedded system drivers and applications. IBIS can detect I/O-dependent

idempotence bugs, giving few (IBIS-S) or no (IBIS-D) false positives and providing actionable bug reports.

These bugs are common in sensor-driven applications and are not fixed by existing intermittent systems.

CCS Concepts: · Computer systems organization→ Reliability.

Additional Key Words and Phrases: intermittent computing, energy harvesting

ACM Reference Format:

Milijana Surbatovich, Limin Jia, and Brandon Lucia. 2019. I/O Dependent Idempotence Bugs in Intermittent

Systems. Proc. ACM Program. Lang. 3, OOPSLA, Article 183 (October 2019), 31 pages. https://doi.org/10.1145/

3360609

1 INTRODUCTION

Batteryless, energy harvesting technology allows devices to operate using energy collected from
their environment such as tiny solar panels [Colin et al. 2018] or radio waves [Sample et al. 2008].
Energy harvesting frees devices from tethered power and avoids the environmental limitations
and maintenance costs associated with batteries. Batteryless operation enables far-reaching sensor-
attached applications, such as medical implants [Proteus Digital Health 2015], building and civil
infrastructure monitors [Kim et al. 2007], and chip-scale satellites in space [Colin et al. 2018; Zac
Manchester 2015]. A batteryless device typically buffers energy in a capacitor. A device’s energy
harvester operates with a power level that is often too weak to directly power a device. Instead,
such a device operates only intermittently, in bursts, when energy is available in the energy buffer.
After buffering a usefully large quantum of energy, the device powers on and activates its sensors,

Authors’ addresses: Milijana Surbatovich, Carnegie Mellon University, USA, milijans@andrew.cmu.edu; Limin Jia, Carnegie

Mellon University, USA, liminjia@cmu.edu; Brandon Lucia, Carnegie Mellon University, USA, blucia@cmu.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).

2475-1421/2019/10-ART183

https://doi.org/10.1145/3360609

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 183. Publication date: October 2019.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3360609
https://doi.org/10.1145/3360609
https://doi.org/10.1145/3360609

183:2 Milijana Surbatovich, Limin Jia, and Brandon Lucia

microprocessor (MCU), and radios to sense, compute, and communicate. Being active depletes the
energy buffer and once it is empty the device powers off, erasing volatile state (e.g., registers, SRAM)
and retaining non-volatile state (e.g., FRAM [TI Inc. 2017a], STT-MRAM [Guo et al. 2010]). Software
on such a device executes intermittently, with operating periods punctuated by reboots. Several
intermittent execution models ensure progress and memory consistency during an intermittent
execution [Balsamo et al. 2016, 2015; Colin and Lucia 2016; Hester et al. 2017; Hicks 2017; Jayakumar
et al. 2014; Lucia and Ransford 2015; Maeng et al. 2017; Ransford et al. 2011; Van Der Woude and
Hicks 2016]. Checkpoints [Balsamo et al. 2015; Jayakumar et al. 2014; Lucia and Ransford 2015;
Ransford et al. 2011; Van Der Woude and Hicks 2016] and tasks [Colin and Lucia 2016; Hester et al.
2017; Maeng et al. 2017] ensure that memory remains consistent and allow an execution to progress
across power failures. While different in their details, these models operate by preserving an
execution’s context before power fails and restoring that context when power resumes, continuing
the execution. After a failure, execution resumes at the last checkpoint or task boundary, and the
execution model ensures that any re-executed memory updates produce the same final memory
state: i.e., the re-execution should be idempotent.

While prior work has made advances in studying progress and memory issues, a program’s inter-
action withmixed-volatility memory is not the only threat to correct and idempotent re-execution. A
program’s interactions with a device’s environment also poses a threat to that program’s correctness
when executed intermittently. Applications of intermittent systems are typically deeply-embedded
and driven by inputs from sensors and outputs to radios. To avoid the onerous and error-prone
task of re-engineering millions of lines of low-level driver code, these input/output (I/O) operations
should be moderated by existing sensor driver code. However, as we demonstrate in this work, the
naive use of existing driver code in an intermittent system can cause a program to misbehave. If a
region of code that interacts with a driver re-executes, the re-execution may not be idempotent,
leading to incorrect intermittent execution behavior.
The goal of this work is to understand non-idempotent behavior caused by intermittent re-

execution of input operations and develop techniques and tools to help programmers identify and
fix bugs caused by such operations. We observe that the problem occurs after a system performs a
repeated I/O operation in an intermittent execution. These repeated input operations (which we call
“RIOsž) may lead to memory inconsistency, failed subsequent input operations, incorrect results, or
a crash. The key problem with a RIO is that the same input operation may produce different values
in different intermittent re-executions. These I/O value differences can cause divergent control-flow
decisions and divergent non-volatile memory updates, which is not idempotent and thus incorrect.

One of the contributions of this paper is to provide the first characterization of non-idempotent
intermittent execution behavior caused by RIOs. Characterizing RIO bugs is critically important to
the correctness of energy-harvesting systems. We show in Sections 7 & 8 that I/O device drivers
from embedded systems libraries such as TI-RTOS [TI Inc. 2017b] are not always safe to use in an
intermittent execution. The problem is especially dire because applications written for intermittent
sensing platforms [Colin et al. 2018; Hester and Sorber 2017; Sample et al. 2008; Zhang et al. 2011a]
typically rely heavily on I/O, and some systems, such as Wisent [Tan et al. 2016] and Stork [Aantjes
et al. 2017] depend on I/O correctness to wirelessly reprogram RFIDs. These failures are even more
serious for distributed intermittent devices, which recent work builds models of [Ma et al. 2018].

Another set of contributions of this work includes the algorithms and tools to help programmers
to identify and fix problems in their programs. Our automated tool support for finding and fixing
RIO bugs in intermittent systems will simplify intermittent system development significantly. We
call this tool suite IBIS1 . We observe that I/O-dependent idempotence violations fit a general code

1I/O Bug-finder for Idempotent Sections

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 183. Publication date: October 2019.

I/O Dependent Idempotence Bugs in Intermittent Systems 183:3

pattern that is identifiable using a static program analysis. We develop a static analysis tool, IBIS-S,
to detect and help programmers fix these bugs. IBIS-S asks the programmer to tag input operations
and relies on a static taint analysis to find branching instructions dependent on I/O that might be
involved in a violation. Leveraging the result of its taint analysis, IBIS-S looks for the specific RIO
code pattern that may cause input-dependent idempotence violations. IBIS-S then provides the
programmer with a detailed report of the involved code, data, and I/O. IBIS-S uses report filtering
and validation to eliminate spurious reports, focusing programmer attention on the reports that are
most likely to induce run-time errors. To avoid the conservatism and imprecision inherent in static
compiler analysis, we develop a dynamic information flow tracking tool (IBIS-D) that identifies RIO
bugs at runtime, as a program executes intermittently. IBIS-D’s analysis dynamically tracks each
operation that is control- or data-dependent on a tagged I/O operation. If such an input dependent
operation non-idempotently manipulates non-volatile memory in subsequent re-executions, IBIS-D
reports to the programmer the offending line of code and involved data.
We evaluate IBIS using 18 real programs containing code from the Texas Instruments Real-

Time Operating System (TI-RTOS) and from prior literature [Colin and Lucia 2016; Maeng et al.
2017]. This evaluation shows that I/O-dependent idempotence violations are a real threat to porting
existing code bases to intermittent systems, and that IBIS directs the programmer to these violations
with very few (usually zero) false positives.

This paper makes the following contributions:
• The first characterization of RIOs and input-dependent idempotence violations.
• Algorithms for identifying code patterns that lead to input-dependent idempotence violations.
• A static tool (IBIS-S) for identifying and validating potential I/O-dependent idempotence viola-
tions.
• A dynamic information flow tracking tool (IBIS-D) for identifying actual I/O-dependent idempo-
tence violations in real intermittent executions.
• An evaluation on widely used embedded OS and application code showing that IBIS effectively
finds bugs with few or no false positives.

2 BACKGROUND ANDMOTIVATING EXAMPLE

This work targets energy-harvesting devices that execute software intermittently [Balsamo et al.
2015; Lucia and Ransford 2015; Maeng et al. 2017; Van Der Woude and Hicks 2016]. Prior work
studied how idempotent execution of code in such systems is complicated by Write-After-Read
(WAR) dependences involving accesses to non-volatile data. We show using an example how
RIOs also disrupt idempotence, causing input-dependent idempotence violations which cannot
be straightforwardly fixed by existing checkpointing strategies. We also discuss how IBIS-S and
IBIS-D can help programmers in combination with existing intermittent systems.

2.1 Computing in Energy Harvesting Devices

The Energy Harvesting Devices discussed in Section 1 buffer collected energy into fixed-size
capacitors and run in short bursts followed by powered-off, recharging periods. Power failures
erase volatile memory, e.g., stack, registers, and peripheral configurations, while preserving non-
volatile memory. Intermittent applications rely on checkpoints [Balsamo et al. 2015; Jayakumar
et al. 2014; Lucia and Ransford 2015; Mirhoseini et al. 2013; Ransford et al. 2011; Van Der Woude
and Hicks 2016] or tasks [Colin and Lucia 2016; Hester et al. 2017; Maeng et al. 2017] to run to
completion across power failures. A checkpoint may occur at an arbitrary point [Balsamo et al.
2015; Jayakumar et al. 2014; Ransford et al. 2011; Van Der Woude and Hicks 2016] in an execution.
Task boundaries, which are like checkpoints, are inserted by the programmer at arbitrary code
points [Colin and Lucia 2016; Hester et al. 2017; Lucia and Ransford 2015; Maeng et al. 2017]. In

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 183. Publication date: October 2019.

183:4 Milijana Surbatovich, Limin Jia, and Brandon Lucia

this paper, we use the general term boundary to refer to both a checkpoint and task boundary.
After a failure, execution resumes at the last boundary, the system ensuring memory consistency
on restart. A key challenge is avoiding potential inconsistencies caused by problematic memory
dependencies that lead to non-idempotent re-execution of some code, producing invalid results.

2.2 Non-idempotency Caused by WAR

io_val = temp()

io_val < limit

a_ok = 1

io_val = temp()

io_val > limit

alrm= 1

assert == false

Execution Time

index = count

count ++
index = count

count ++

buf[index] = 1

assert == falseRestart

indexcheckpoint();
index = count;
count++;
buf[index] = 1;
assert(buf[0]);

checkpoint();
io_val = temp();
if (io_val < limit):

a_ok = 1;
else:

alrm = 1;
assert(a_ok^alrm); Restart

(a) Write After Read (WAR) (b) I/O operation

0

count

1

alrm

0

1

a_ok

buf

00

index

1

count

2

buf

10

alrm

1

1

a_ok

Fig. 1. Memory inconsistencies due to WARs and RIOs. A solid arrow indicates a memory update caused by

an instruction. A dashed arrow indicates a data dependency from NV memory to a re-executed instruction.

Prior work observed that the intermittent re-execution of code containing a WAR dependence
may not be idempotent; a read occurring after a power failure may consume a value from a WAR-
dependent write that executed before the power failure. Figure 1 (a) shows how a WAR dependence
can lead to memory inconsistency. The left box is main(). The global variable count is in non-
volatile memory and initialized to zero. The middle box shows the first execution of main, which
updates the index and count variables in non-volatile memory. Power fails before the buffer is
updated. The right box shows a re-execution from a checkpoint at the first line of main(). The
execution stores the wrong value of count into index. As a result, the code incorrectly updates the
second entry of the buffer instead of updating the first. The assertion fails and the program crashes.
The key to this failure is theWAR dependence between the operations manipulating the non-volatile
variable count. A write (to count) occurs in the execution that the power failure interrupts. After
the restart, the read of count consumes the value written before power failed, instead of its initial
value. The problematic WAR dependence causes the re-execution of the code after the checkpoint
to be non-idempotent, producing a different result from the first execution. WAR dependencies are
a first and important cause of non-idempotent behavior that has been addressed by many prior
efforts [Hicks 2017; Lucia and Ransford 2015; Maeng et al. 2017; Van Der Woude and Hicks 2016].
WAR dependencies, however, are not the only source of non-idempotent behavior.

2.3 Non-idempotency Caused by RIOs

Figure 1 (b) shows an example of how a RIO leads to incorrect behavior. The left box is main(),
which reads from a temperature sensor. If the reading is less than some limit, the code sets a_ok
to 1 and otherwise sets alrm to 1. At the end of the function, a sanity check asserts that only one
of a_ok and alrm is set. The middle box shows an execution that reads a value from the sensor
that is below the threshold, setting a_ok in non-volatile memory. Power fails and the program
re-executes as shown in the right box. The code reads a sensor value that is above the threshold
and sets alrm in non-volatile memory. At this point in the execution, both alrm and a_ok are set,
which is incorrect. The assertion fails and the program crashes.

Part (b) shows that repeated invocations of the input operationÐa RIOÐproduce different results,
even without WAR dependencies (illustrated in Part (a)). It’s clear that alrm and a_ok are write
only. This means RIOs lead to the inconsistent memory state shown, even using a sophisticated
checkpointing or task mechanism [Lucia and Ransford 2015; Maeng et al. 2017; Van Der Woude and
Hicks 2016]. Each different result follows a different control-flow path in the program and updates

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 183. Publication date: October 2019.

I/O Dependent Idempotence Bugs in Intermittent Systems 183:5

different non-volatile variables; the initial execution and its re-execution are not idempotent. This
non-idempotence is not safe and yields an incorrect setting of alrm and a_ok that is not possible in
any continuously-powered program execution.
The essence of the problem with the RIO in the figure is that different input values in inter-

mittent re-executions of the same code region can lead to different branch outcomes and differ-
ent non-volatile memory updates. These inconsistencies between consecutive re-executions are
input-dependent idempotence violations, which we characterize for the first time in the context
of intermittent systems in this paper. We provide a more precise account of how RIOs violate
idempotency in Section 3.6.

2.4 Nuances in Fixing Idempotence Bugs Caused by RIO

Both checkpoint and task-based programming models ostensibly offer simple solutions to RIOs and
input-dependent idempotence violations by placing a boundary after the I/O operation, ensuring
the input is preserved in non-volatile memory. Re-execution from a boundary after the I/O will
always follow the same path because each re-execution always uses the same I/O result. While
this simple fix may be viable for some applications, it is simply inapplicable to others as it violates
timeliness [Hester et al. 2017] and input atomicity [Colin et al. 2018; Kang et al. 2018], important
properties pointed out in prior work.

Timeliness requires processing of an input value to occurwithin a fixed duration from its collection
or else the input should be recollected. There is no bound on the duration that a device needs to
recharge after a power failure, especially in the absence of predictable, harvestable energy. Placing
a boundary between the I/O and its processing may break timeliness constraints. If an input is
collected, execution crosses the boundary, and the power fails, the collected input will be arbitrarily
old when execution resumes and the data is finally processed. Such a delay between input and
processing may produce results that are inconsistent with reality.

Boundaries at arbitrary program locations may also violate the programmer’s expectations about
what executes atomically, violating key assumptions. For instance, a program may first check that
a sensor is both powered on and listening on a serial bus before reading data from the sensor. A
re-execution that starts from a boundary between the sensor check and the sensor read will not
repeat the check before reading the sensor, leading to a failure to read the sensor.

Checkpoints and tasks do not preserve timeliness, so they are not a sure fix for RIOs. Similarly,
addressing RIOs using checkpoints or tasks may interact badly with I/O. The absence of a simple
fix to the RIO problem with existing execution models emphasizes the need for debugging support
for input-dependent idempotence violations.

2.5 Workflow of Using Existing Intermittent Systems and IBIS’ Use-case

To create intermittent applications, programmers have four main options: using a task-based
runtime, using checkpoints that are annotated or automatically placed during compilation, using
checkpoints that execute just in time while the program is running, or not using anything and
ensuring correct execution by hand. Figure 2 shows the process involved to transform a correct C
program into an intermittent program with each of these methods, as well as the intermittence
bugs that will still remain. We indicate representative, but not exhaustive, examples of each system.

To use a task-based system, programmers must restructure the code into tasks that fit the system’s
language model. Task-based programs will not have timeliness (indicated by TIME in the Figure)
or WAR idempotence bugs as programmers can control where execution restarts, and the runtime
tracks and revert the effect of WAR accesses. I/O bugs will still exist as no existing task-based
system includes the effect of I/O operations in its idempotence analyses.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 183. Publication date: October 2019.

183:6 Milijana Surbatovich, Limin Jia, and Brandon Lucia

C Program

No

modifications

Intermittent Program

JIT Checkpoints
(Samoyed, QuickRecall

Hibernus)

Manual State

Management
Checkpoints

(Dino, Ratchet)

Task-Based
(Alpaca, InK, Coati)

Annotated or

Automatic

Checkpoints

Fig. 2. The process of creating an intermittent program.

I/O bugs are highlighted as they are the focus of this

work. Manual state management is the most bug prone,

but it is the most realistic option for low-level sys-

tem code. In order, the works referenced are [Maeng

et al. 2017] [Yildirim et al. 2018] [Ruppel and Lucia

2019] [Lucia and Ransford 2015] [Van Der Woude and

Hicks 2016] [Maeng and Lucia 2019] [Jayakumar et al.

2014] [Balsamo et al. 2015]

To use a checkpoint-based system, program-
mers write the C code with little or no mod-
ification and expect the compiler to produce
an intermittence-safe binary. If the program-
mer can control where the checkpoints are
placed [Lucia and Ransford 2015], the program-
mer can avoid introducing timeliness bugs into
the program. If checkpoints are determined by
program analysis [Van Der Woude and Hicks
2016], the program will still be susceptible to
them. Aswith task-based programs, these styles
of checkpointing do not consider idempotence
violations caused by I/O and will produce pro-
grams that still have I/O bugs.

Using a just-in-time (JIT) checkpointing sys-
tem requires no programmer involvement, and
the program will not have WAR or I/O bugs as
code does not re-execute. Since the program-

mer cannot indicate which regions should execute atomically, there may still be timeliness bugs.
In the manual approach Ð which is particularly likely for the low-level driver and system code

that IBIS targets Ð programmers do not use any runtime or compiler assistance but instead attempt
to identify and remove all idempotence violations by hand. This process is tedious and error prone,
much benefiting from debugging tools.

In summary, no current system option will guarantee a correct intermittent program, and most
techniquesÐcheckpoints that allow re-execution, tasks, and manual state managementścan still
result in I/O idempotence violations. IBIS-S’ I/O idempotence analysis can be integrated into the
WAR dependence analysis to remove I/O bugs for existing checkpoint and task-based systems,
if freshness is not a concern. In all cases, IBIS identifies potential bugs caused by I/O, drastically
reducing the programmer burden and providing valuable information towards fixing these bugs
(See Section 6.2 for details).

3 SYSTEM OVERVIEW

We provide an overview of our tool IBIS, which is shown in Figure 3. IBIS consists of three main
components: static taint analysis for identifying code patterns characteristic of input-dependent
idempotence violations (Sections 3.3); bug validation that helps programmers determine if a reported
bug causes an error in a software-emulated intermittent execution (Section 3.4); and a dynamic taint
tracker that can detect or validate bugs in programs running on real energy harvesting hardware
(Section 3.5). Next, we describe the input, output, and the design of each component. Detailed
technical descriptions are in Sections 4, 5, and 6.1. Finally, we give a definition of the idempotence
property that IBIS targets (Section 3.6).

3.1 Design Assumptions

We summarize the key design assumptions of IBIS: execution model and failure model.

Execution Model IBIS’s static analysis implementation is not tied to any intermittent execution
model. IBIS-S gives useful results whether the programmer is using checkpoints, tasks, or attempting
to port code manually. IBIS-S provides two filtering modes which allow the programmer to refine
the analysis if using checkpoints or tasks. The dynamic analysis tool IBIS-D is implemented for

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 183. Publication date: October 2019.

I/O Dependent Idempotence Bugs in Intermittent Systems 183:7

1 [io_src = ͞getTemp͟]
2 int main (){

3 temp= getTemp();

4 if(temp < limit){

5 steady = 1;

6 }else{

7 blink = 1;

8 }

9 alert();

10 }

Annotated C program

if temp < limit

steadyblink

Function: main

Src: getTemp

/*I/O @ main.c:4*/

if(temp < limit){

steady = 1;

}else{

blink = 1;

}

int main(){

[Checkpoint]

temp= getTemp();

if(temp < limit){

steady = 1;

[Power Fail]

}else{

blink = 1;

}

[assert !(blink&steady)]

}

Report

Validation

Static Taint Analysis Bug Pattern Matching

temp = getTemp()

if temp < limit

blink = 1

writes[s0]

{blink}

writes[s1]

{steady}

s0:

steady = 1

s1:

data

flow

control

flow

Report

Filtering

io_val = temp()

temp > limit

blink = 1

io_val = temp()

temp < limit

steady = 1

task_alert()

Dynamic Taint Tracking Report

Runtime violations:

addr(blink) @ pc

addr(…) @ pc

Taskify

1 [io_src = ͞getTemp͟]
2 task_sense (){

3 temp= getTemp();

4 if(temp < limit){

5 steady = 1;

6 }else{

7 blink = 1;

8 }

9 task_alert();

10 }

Annotated Task program

IBIS-S

IBIS-D

. . .

. . .

Fig. 3. High-level view of IBIS. The input to IBIS-S is programmer-annotated C programs. IBIS-S’ bug

identification sub-system uses a taint analysis and bug pattern matching. The bug reports are further filtered.

Final bug reports can be validated using IBIS-S’ validation sub-system which implements a checkpoint

emulation system. IBIS-D runs on task-based programs and identifies concrete bugs at runtime.

programs using Alpaca, a task-based runtime. The dynamic analysis algorithm can be generally
applied to other intermittent systems, not limited to task-based systems.

Failure Model We assume power can fail at any point, wiping the volatile state of the device,
including the registers, stack, and peripheral state. On reboot, the device resumes execution from
the last boundary point, restoring any checkpointed variables.

3.2 Programmer-supplied Input Annotations

The input to IBIS-S is a C program with annotations in the global region indicating which oper-
ations can produce an I/O input value. In Figure 3, the Input box shows an example annotated
program, where line 1 in blue is an annotation stating that getTemp produces an I/O input. Radio
receiver code, sensor drivers, and user interface components are common sources of input. Other
operations may include driver interfaces exposed to the operating system or direct manipulation
of memory-mapped I/O registers. Programmers can use IBIS-S’ annotations to mark any of these
operations as appropriate. Identifying input operations is unlikely to impose a high burden on the
programmer because programmers are typically aware of points in code that interact with external
devices, especially in an energy-constrained intermittent systems. As is typical in many embedded
applications, IBIS-S assumes that input programs do not have recursive functions.

3.3 IBIS-S: Finding I/O Bugs Statically

Static Taint Analysis The heart of IBIS-S is a static taint analysis, implemented using the LLVM
compiler framework, that identifies divergent control flow or memory updates depending on I/O

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 183. Publication date: October 2019.

183:8 Milijana Surbatovich, Limin Jia, and Brandon Lucia

inputs. For the rest of this paper, we will call conditionals depending on I/O tainted branches or
input-dependent branches. The sources (the initially tainted variables) of IBIS-S, taint analysis are
input variables annotated by the programmer. For instance, in Figure 3, temp is a source. IBIS’s taint
analysis is an iterative, flow-sensitive, context-insensitive, inter-procedural algorithm. The analysis
follows data and control flows to identify new tainted variables until a fixed-point is reached. In
Figure 3, we use red arrows to illustrate dependencies that the taint analysis traverses. After the
first iteration, the algorithm identifies line 4 as an input-dependent branch and also marks blink
and steady as tainted.

Bug Pattern Detection IBIS-S uses the taint analysis results to find potential input-dependent
idempotence violation bugs by identifying their characteristic code patterns. The first pattern,
involving control flow, has two key features. First, buggy code must include a tainted branch. Second,
the tainted branch must lead to divergent write sets, which are writes to different sets of non-volatile
memory locations along different conditional paths. Two executions of programs with the above
pattern could leave memory in an inconsistent state if the tainted branch resolves differently in two
consecutive re-executions. If the write-sets in each execution diverge, the re-execution may not
overwrite all locations written to in the first execution. As a result, updates from both paths from
the branch remain in memory after the re-execution, which is incorrect. IBIS-S implements the bug
pattern detection by combining an algorithm for identifying write sets with the taint analysis. As
illustrated in Figure 3, IBIS-S reports a bug for the example.

A second pattern is when a pointer used to store to memory is tainted by I/O. If the value of the
pointer changes on re-execution, the location being stored to changes, causing both updates to
remain in memory even without branching control flow.

Bug Reporting and Report Filtering Once a bug pattern is identified, IBIS-S outputs a report.
Each report lists the tainted branch, the variables in the branch’s divergent write sets, and the
sequence of taint propagation that led to the tainted branch. For instance, the report in Figure 3
states that in function main, the source of I/O input is getTemp, and an input-dependent branch
is found at line 4 of the C file. The rest of the report is the branching instruction with only the
write instructions to variables stored in non-volatile memory. IBIS-S can optionally filter reports to
eliminate reported bugs that are unlikely to manifest divergent write sets.

A reported bug is not a true bug if, on re-execution, code preceding the tainted branch re-initializes
all of the variables in the reported write sets. Re-initialization ensures that any re-execution is
idempotent. Whether an execution re-initializes these variables depends on where a system resumes
execution after a power failure. IBIS can be configuredwith two filtering heuristics based on common
intermittent execution models: task function filtering and I/O checkpoint filtering. For our example
here, the filter makes no difference. We will show an example of filtering in Section 4.3.

3.4 Failure Validation

IBIS provides support for programmers to understand and fix bugs. IBIS implements a report
validator that executes the program in an emulated intermittent environment to determine whether
the bug leads to a real failure. To use the validator, the programmer, using the bug report as a
guide, specifies via annotations where to emulate a power failure, typically along one side of a
tainted branch in the report. Next, using knowledge of the execution model, the programmer also
specifies where to resume after the power failure, typically before an I/O operation or at the top
of a tainted branch’s function. Lines in blue in the validation box in Figure 3 are the annotations
programmer would need to add. The last annotation is merely triggering an error in the execution.
Finally, the programmer recompiles the annotated code, targeting a development machine. To
generate input, programmers can either provide IBIS with trace files or a model of the input function

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 183. Publication date: October 2019.

I/O Dependent Idempotence Bugs in Intermittent Systems 183:9

that generates random values fitting the input specification. The validator then runs the program
with the programmer-provided inputs on the host machine, detecting crashes or assertion failures.
Concrete executions from the validator reveal how a bug leads to a failure, helping to develop a fix.

3.5 IBIS-D: Finding I/O Bugs Dynamically

We implement a dynamic taint tracker, IBIS-D, that can detect I/O idempotence violations at runtime.
At compile time the program is intrumented with calls to a runtime library. The runtime library
tracks the taint of each address and gives a warning if the program reads I/O dependent values not
consistent with the current execution. Consider an execution of task_alert in Figure 3. It updates
the value of blink in memory and then restarts. IBIS-D tracks that blink is dependent on I/O, and
once execution fails it records that the update was not committed. The subsequent re-execution
takes the other path, updates steady, and transitions to the next task. IBIS-D tracks that steady is
dependent on I/O and that it has been safely committed. Any uses of steady in task_alert will be
safe, but any uses of blink will generate a runtime warning. Since bug reports are only generated
when the tool detects an actual memory violation at runtime, IBIS-D has no false positives.

3.6 Correctness Criteria and Bug Definition

For a program with I/O operations to be correct on intermittent power, the result of a partial
execution of a region with input i composed with a completed execution with input i ′ must be
equivalent to a continuously powered execution with input i ′. More concretely, let p be a program
segment between two adjacent checkpointed boundaries (in a task-based system, p would be the
code for a task). Note that the boundaries remove concerns ofWAR dependencies. LetM denote non-
volatile memory, which is a mapping from variables to values. Let wt(i) denote the set of updates
to non-volatile memory dependent on the input i (e.g., a sensor reading). Here, “dependent onž
includes both data and control flow dependencies. Starting from an initial memoryM0, executing
p until power failure results in the non-volatile memory being updated by writes dependent on
i , which is written M0 ◁ wt(i). After reboot, p starts to execute on this updated memory. The
re-execution reads a new I/O input i ′, writing to memory locations wt(i ′). When p finishes, the
resulting memory isM0 ◁wt(i) ◁wt(i

′). For a given input i ′, however, the final memory state for a
continuous execution isM0 ◁ wt(i

′). If wt(i) and wt(i ′) do not write the same locations, these two
states differ, and the idempotence property is violated.
The correctness criteria is M0 ◁ wt(i) ◁ wt(i ′) = M0 ◁ wt(i ′) for any i and i ′. The sufficient

condition is wt(i) = wt(i ′), and its negation is the input-dependent idempotency bugs that IBIS
identifies. These are high-level informal definitions to illustrate the main points and omit final
details such as sequences of I/O inputs and subset relations between wt(i) and wt(i ′). We leave a
rigorous formal model of correct intermittent execution for future work.

4 BUG IDENTIFICATION AND REPORTING IN IBIS-S

We present the algorithms used by IBIS-S’ bug identification and reporting. The order in which
each component is called is slightly different from Figure 3. The top-level algorithm (shown in
Algorithm 1) is a taint analysis. The bug pattern detection (shown in Algorithm 2) and filtering are
called by the taint analysis eagerly during each iteration of the analysis. The program in Figure 4,
extended from Figure 3, illustrates key points of the algorithms.

4.1 Top-level Taint Analysis

Algorithm 1 is IBIS-S’ top-level algorithm: it traverses both local and inter-procedural dependencies
to propagate taint information, identifies stores using tainted pointers, and checks tainted branches
for the input-dependent idempotence violation bug pattern. The algorithm as implemented is not

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 183. Publication date: October 2019.

183:10 Milijana Surbatovich, Limin Jia, and Brandon Lucia

sound ś we discuss limitations in Section 4.4 and a precise formulation of the variable sets that a
sound algorithm would collect in Section 4.5.

1 [io_src = ͞getTemp͟]
2 int steady, blink

3 int count, events = 0

4 int main(){

5 count = 0

6 while (count < MAX_COUNT){

7 temp= getTemp()

8 if (temp < limit){

9 steady = 1

10 }else{

11 blink = 1

12 }

13 alert()

14 count++

15 }

16 }

17

18 void alert(){

19 if (blink){

20 events++

21 print(“Too Hot!”)
22 }

23 }

data flow

control dependence

interprocedural data flow

Function: main

Src: getTemp

/*I/O @ main.c:4*/

if(temp < limit){

steady = 1;

}else{

blink = 1;

}

Function: alert

Src: blink

/*I/O @ main.c:19*/

if(blink){

events++

}

Reports

Fig. 4. This program samples from a temperature sensor,

checks if the reading is above a certain level, and sets a flag.

If the temperature is too high, it prints out an alert and adds

to an event counter.

Taint analysis begins in traverse_-

dataflow with the construction of an ini-
tial worklist containing only definitions
at an I/O source, as annotated by the pro-
grammer (lines 2ś5). Here new_srcs is the
top-level work-list containing all instruc-
tions that are a new source of tainted in-
put into any function. For instance, line
7 of the example program is in new_srcs.
The main loop in the analysis iterates over
items in the new_srcs (lines 6-32). The
analysis then tracks which variables be-
come tainted in a worklist, performing a
depth-first search of dataflow along def-
use chains. For each instruction in the
new_srcs, the tainted variable in that in-
struction is added to a second function-
local worklist tainted_list, which stores all
the tainted variables within the current
function being analyzed. For our example,
tainted_list initially contains only temp.
Then, all uses of the tainted variables

are examined and categorized into three
cases (lines 15ś29). The first case is when a use of a tainted variable is in a definition of a variable.
The defined variable becomes tainted and is added to the worklist tainted_list (lines 16ś20). If the
tainted operand in the definition instruction was the pointer operand, the calculated address may
vary each execution, potentially accessing different memory. The analysis adds such a definition
instruction to the bug report.
The second case is when the use is in a conditional of a branch instruction (lines 21ś24). Here,

the first feature of the bug pattern matches, and the analysis calls the check function (Algorithm 2)
to check for the match of the second feature of the bug pattern (details in Section 4.2). check
traverses the taken and not-taken control-flow paths that are dependent on the branch’s outcome.
The traversal also adds all variable definitions encountered on the taken and not-taken paths to the
worklist being processed by traverse_dataflow (line 20 in Algorithm 2). These definitions are
tainted because they are control-dependent on the tainted branch. For instance, steady and blink
will be added to the tainted list during this traversal.

In the third case, a use of the tainted variable is in another function and triggers inter-procedural
taint propagation (lines 25ś28). Interproc returns all the cross-function use sites. There are four
operations that create such uses: (a) storing a tainted value to a global variable, (b) returning a
tainted value, (c) storing a tainted value to a parameter passed by reference, and (d) a function call
with a tainted variable as its argument. Figure 5 is a summary of the inter-procedural flows. In the
case of any of these instructions, IBIS-S calculates instructions that are sinks (i.e. targets) of the taint
propagation. For storing a tainted value to a global variable, all uses of the global variable in the
whole program are sinks (will be tainted). For a return, the corresponding call instruction is the sink.
For an assignment to a parameter passed by reference, the variables whose addresses are used by
callers are sinks. For a function call with tainted arguments, all uses of the tainted arguments within

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 183. Publication date: October 2019.

I/O Dependent Idempotence Bugs in Intermittent Systems 183:11

1: function traverse_dataflow

2: for all io_src ∈ uses(func_annotated) do
3: new_srcs.add(io_src)
4: ▷ init. new_srcs with annotated input func.

5: end for

6:

7: while !new_srcs.empty() do

8: ▷ add to worklist if taint crosses funcs
9: curr_val← new_srcs.pop()
10: tainted_list.add(curr_val)
11: ▷ traverse dataflow of curr_val within the func.
12: while !tainted_list.empty() do

13: var ← tainted_list.pop()
14: for all use ∈ uses(var) do

15: if is_def (use) then
16: tainted_list.add(use.defvar)
17: if is_ptr(var) then
18: ▷ does this store use a tainted pointer?

19: bug_report[func].add(use.defvar)
20: end if

21: else if is_branch(use) then
22: ▷ does the branch match bug pattern?

23: check(use, tainted_list)
24: filter(report)
25: else if is_interproc(use) then
26: sources← interproc(use)
27: ▷ add interproc. flow to the work list

28: new_srcs.add(srcs)
29: end if

30: end for

31: end while

32: end while

33: end function

Algorithm 1. Taint Analysis

1: function check(branch, tainted_list)
2: brs← successors(branch)

3: for all b ∈ br do

4: ▷A fall-through has an empty write set

5: if b == fallthrough then

6: wrt[b] = empty; continue
7: end if

8: ▷ find where the paths join

9: join_blk ← PhiNode(branch).block

10: ▷ explore successors until join block

11: blks_in_branch←
12: GetBlks(b, join_blk)
13: for all blks ∈ blks_in_branch do

14: for all insts ∈ blk do

15: if inst == store then

16: wrt[b].add(inst)

17: tainted_list.add(inst)
18: end if

19: if inst == callinst then

20: pre← precomp_wr[callee]
21: wrt[b].add(pre)

22: end if

23: end for

24: end for

25: end for

26: for all i ∈ [0, brs.size − 1] do

27: for all j ∈ [i + 1, brs.size − 1] do

28: if wrt[brs[i]]!=wrt[brs[j]] then
29: bugReport[branch].add(wrt[b])

30: return true

31: end if

32: end for

33: end for

34: return false

35: end function

Algorithm 2. Checking for the bug pattern.

the callee are sinks. We used Steensgaard’s alias analysis to track pass-by-reference parameters. To
reduce extraneous may-alias reports, we modified it to only consider caller arguments with the
same index as the tainted parameter. We discuss its limitations in Section 4.4.
The analysis adds all of these sinks of inter-procedural flow to the top-level worklist new_srcs,

which will be processed by the outer-most loop of traverse_dataflow. In our example the use of
blink as indicated in Figure 4 triggers an inter-procedural taint propagation to a branch condition
in alert. As a result, line 19 will be added as a new source. In the next iteration, events will
become tainted because it is control dependent on blink.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 183. Publication date: October 2019.

183:12 Milijana Surbatovich, Limin Jia, and Brandon Lucia

func sample:

io_src = getTemp()

global temp = io_src

func process:

sink = temp

(a) Tainted value is a

global. Taint is propagated

to any uses of the global.

func sample:

io_src = getTemp()

return io_src

func process:

sink = sample()

(b) Tainted value is re-

turned. Taint is propa-

gated to caller.

func sample(arg*):

io_src = getTemp()

*arg = io_src

func process:

sample(&sink)

(c) Tainted value stored in

reference parameter. Taint

is propagated to caller.

func sample:

io_src = getTemp()

process(io_src)

func process(temp):

sink = temp

(d) Tainted value is used as

function argument. Taint

is propagated to callee.

Fig. 5. Summaries of inter-procedural taint propagation

4.2 Bug Pattern Detection

Besides reporting tainted pointers as bugs, IBIS-S uses the check function listed in Algorithm 2
to determine whether a particular branch matches the bug pattern. The analysis examines the
non-volatile variables written on all taken paths and all non-taken paths of the branch up to the
point where the paths meet (i.e., at their common phi node in the CFG). If the taken paths write a set
of variables that is not identical to those written by the non-taken paths, the analysis produces a bug
report containing the branch, the taken and non-taken paths’ write sets, and the taint propagation
leading to the branch. IBIS-S treats fall-through paths as having an empty write set. In the example
program, check is called on the branches at lines 8 and 19. For the first branch, the target block on
one side contains a write to blink at line 11, and the other side has a write to steady at line 9. For
the second branch, the fall through is empty, and the taken side writes to events at line 20.
Inter-procedural Write Set Tracking. A function called along a path may write non-volatile
state, and IBIS-Smust track these writes when computingwrite sets. To avoid costly inter-procedural
analysis, IBIS-S approximates a function’s write set. The approximation pre-computes themay-write

set for every function using a bottom-up traversal of the call graph (recall that IBIS-S assumes
no recursive function calls). The traversal computes a summary of all writes each function may
perform. The traversal adds a callee’s write summary to its caller’s write summary and terminates
on reaching the top of the call graph. If check encounters a function call while traversing a path,
the pre-computed may-write summary of the function is added to that path’s write set (lines 19-21
of Algorithm 2). Our write summaries are a conservative over-approximation (Section 4.4).
Branch Write Set Analysis Outcomes Three possible analysis outcomes of a branch are: (i)
non-volatile variables written only on one side, (ii) different non-volatile variables written on
different sides, and (iii) the same variables written on all sides. In a sound analysis, only the first
two cases are potentially buggy. In the first case writes made on one side of the branch may be
partially applied, but interrupted by a power failure. A later re-execution may traverse the other
side of the branch, leaving an incorrect partial update. In the second case, execution may lead to
a mixture of partial updates from one side of the branch (before a power failure) and from the
other side (during re-execution), which is incorrect. In the third case, any writes applied in the
first execution will get overwritten on subsequent executions no matter the value of the input,
leaving the memory in a consistent state. The example in Figure 4 fits the second pattern as blink
is written on one side of the branch and steady on the other.

4.3 Filtering Detected Bugs

IBIS-S filters reported bugs that are unlikely to lead to a failure. IBIS-S discards a report if the
involved variables are sanitized through re-initialization when a re-execution starts, or if the
dataflow necessary to trigger the failing execution is not possible on a targeted execution model.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 183. Publication date: October 2019.

I/O Dependent Idempotence Bugs in Intermittent Systems 183:13

IBIS-S’ filtering mechanism is flexibly applicable to a variety of intermittent execution models,
including task-based and checkpointing models.
A variable tainted by dependence on I/O is sanitized if it is overwritten at the start of any re-

execution before any use of that variable. Figure 6 illustrates sanitization. The first execution follows
the branch’s taken path and writes to x, but the power fails before y is written. On re-execution,
both x and y are set to zero, returning x and y to a valid initial state and avoiding a non-idempotent
re-execution. IBIS-S uses a second dataflow analysis to identify operations that sanitize variables
appearing in the initial bug report.

int main() {
x = 0
y = 0
io_val = sense();
if (io_val < limit){
x = 1;
y = 1;

}

//must be both 1 or both 0

assert(!(y^x));
}

x = 0

y = 0;

io_val = sense()

io_val < limit

x = 1

x = 0

y = 0

io_val = sense()

io_val > limit

assert == true

Power fail

x = 1

y = 0

x = 0

y = 0

Execution Time

I/O dependent update Sanitizing update

Fig. 6. x and y are control-dependent on a tainted

branch but are always safely reinitialized.

The filtering algorithm can be configured to
model re-execution after a power failure from
either of two restart points: (i) the top of the

function containing the report’s tainted branch,
or (ii) immediately before the I/O operation on
which the report’s tainted branch depends. Us-
ing the top of the function as the restart point
corresponds to task-based execution [Colin and
Lucia 2016; Maeng et al. 2017] and to check-
pointing that places a checkpoint on function

entry [Van Der Woude and Hicks 2016]. A restart point before an I/O operation corresponds to
checkpointing at arbitrary locations at the last point that will preserve the operation’s timeliness.
IBIS-S’ filtering algorithm examines instructions along any CFG path between the restart point
and the report’s tainted branch. If there is a writeÐa sanitizing writeÐto a variable in the report
along every such path, the variable is removed from the report. If there is a sanitizing write to every
variable in a report, the report is discarded.

Additionally, task-based systems or systems that checkpoint on function entry will only re-
execute operations in the current function. If task function filtering is enabled, all reports whose
I/O source and tainted branch were in different functions will be discarded. After task boundary
crossing, the I/O dependencies are no longer non-idempotent, and all taints are cleared.

IBIS-S does not filter tainted pointer reports as whether the concrete value of the address changes
on re-execution is information only available at runtime.

4.4 Soundness and Limitations

IBIS-S’ over-approximation in computing may-write sets, context insensitivity, and heuristic-based
alias analysis can cause false-negatives. Two may-write sets of a branch may match and thus not
get reported, while concrete executions might have divergent writes. For example, in an if-else
branch the "if" path might write variables x and y while the "else" contains a nested branch that
writes x on one side and y on the other. The may-write sets of the top level branch are identical,
x and y, but actually taking the "else" path will only write to one of the variables. Even though
our analysis is flow-sensitive, plugging in may-write set summaries of nested branches brings
unsoundness. At a glance, the may-write approximation seems to also cause false positives if a
branch is always taken (or not taken). Consider the following program if c x:= 3 else {if true

x:= 3 else y:= 5}. IBIS-S will report a bug, but any execution will only write to x . The underlying
issue here, however, is that, like many static analyses, IBIS-S treats predicates as opaque and can’t
determine the value of the conditionals. Context insensitivity can cause similar false-negatives:
if a function is called within the blocks dependent on a tainted branch, we add its precomputed
may-write set to the result of the traversal.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 183. Publication date: October 2019.

183:14 Milijana Surbatovich, Limin Jia, and Brandon Lucia

When computing pass-by-reference data flows, we only check the caller argument with a
matching index to the parameter. If the parameter aliases another argument, we would not explore
that dataflow path, missing a potential bug. This does not cause false positives.
These tradeoffs were made as IBIS-S is for bug finding and its requirements for performance

outweigh that for soundness.

4.5 Implementing a Sound Algorithm

The algorithms as implemented sometimes sacrifice precision for engineering and performance
reasons. To be sound, IBIS-S would need both to calculate precise may and must-write sets and
have precise taint tracking. Here we sketch a formulation of the precise sets of the variables that a
tool like IBIS-S should track. While stating a semantic formulation is simple, implementing it in a
static analysis remains hard.
A RIO bug occurs if a variable can be written on at least one path, but not all of them. If a

variable were written to on all paths, it would always get sanitized on the current execution, and the
inconsistent values would not remain in memory. We note then that the set to collect for a program
region P is MayWt(P) \MustWt(P). This formulation must be quantified over the input values. For
a variable to be inMustWt(P), it must be written on all possible inputs, whereas to be inMayWt(P)

there must simply exist an input on which the variable is written. Implementing this formulation is
complicated by what may and must writes sets mean under intermittence. Without any inputs,
execution is deterministic. Even if there are multiple paths through a program, re-executions will
always take the same path, so any written variables are effectively in the must-write set. This is why
prior systems, which don’t consider I/O, only checkpoint variables involved in WAR dependencies.
Inputs introduce non-determinism, allowing the program to potentially take different paths each
execution. Thus control-flow points that in no way depend on inputs are perfectly safe, whereas
input-dependent conditionals require the MayWt \MustWt set to be calculated for code paths that
are non-deterministically executed, i.e, the regions from the branch until control flow rejoins a
deterministic path whose execution does not dependent on inputs.
This formulation is easy to state but non-trivial to implement. Computing conservative must-

write and may-write sets is easy, but computing precise sets is difficult. A conservative must-write
set may be too small, and a conservative may-write set may be too large. Since a sound tool needs
the set difference between the must and may-write sets, if either set is not precise, the combination
will not be precise either. Opaque path conditions can still cause errors for the static analysis as
well, and the taint tracking itself must be sound to accurately determine the boundary between the
deterministic and non-deterministic portions of the program region. The heuristic alias analysis we
use has the potential to under-taint, possibly missing a code region that should be analyzed, but the
unaltered Steensgaard’s analysis has the potential to over-taint, which would cause an algorithm
to consider deterministic paths as non-deterministic.

5 IBIS-D: DYNAMICALLY DETECTING RIO BUGS AT RUN TIME

We develop a dynamic taint tracking analysis, IBIS-D, to identify RIO bugs at run time as a program
executes. Dynamic tracking overcomes key sources of imprecision in IBIS-S, namely heuristically
guided pointer analysis and context insensitivity. The high-level analysis in IBIS-D is similar to the
one in IBIS-S. The analysis tracks control and data dependencies from input operations and detects
inconsistent writes to non-volatile memory. Unlike the static analysis used in IBIS-S, IBIS-D uses a
compiler pass to insert instrumentation code into an application. The instrumentation runs code
in IBIS-D’s runtime library that tracks tainted variables and detects RIO bugs dynamically. The
compiler pass inserts runtime calls at conditionals, I/O operations, and memory accesses. As the
program executes, IBIS-D’s runtime library keeps track of which variables are tainted because of a

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 183. Publication date: October 2019.

I/O Dependent Idempotence Bugs in Intermittent Systems 183:15

control or data dependence on an input operation and whether these variables are fresh, written on
the current execution, or stale, written on a prior, failed execution. To detect RIO bugs, the runtime
propagates and analyzes data taint at each memory access. If a program loads a variable that is both
tainted and stale, i.e., it became tainted before the most recent power failure, the variable’s value is
the result of a RIO bug. IBIS-D generates a bug report at each such load. We describe IBIS-D’s taint
tracking and monitoring algorithm and implementation in Section 5.1 and discuss the trade-offs
between static and dynamic taint tracking and RIO bug detection in Section 5.2

5.1 Design and Implementation

IBIS-D’s core algorithm implements dynamic taint tracking to track information-flow from I/O
operations to other data in a program and freshness tracking to determine if a memory access is a
bug. Data freshness is a key component in detecting intermittence bugs and is a major difference
between IBIS-D and other dynamic taint tracking tools [Enck et al. 2010; Melicher et al. 2018].
Reading a fresh, tainted variable is safe because the input on which the variable depends was
generated on the current execution. Reading a stale, tainted variable may represent a RIO bug
because the input on which the tainted variable depends may not be consistent with the new input
generated after the power failure. IBIS-D detects such accesses of stale, tainted data and generates
a bug report including the variable’s memory location and the program counter of the access. Taint
is cleared from a variable when execution reaches a point where the input on which the variable
depends will not re-execute if power fails (e.g., after taking a checkpoint or committing a task).
We prototyped IBIS-D for programs written in the Alpaca [Maeng et al. 2017] programming

language and runtime. Alpaca uses a task-based execution model. Alpaca guarantees that the result
of a memory update that is executed within one task is not visible to another task or a re-execution
of the same task until the current task finishes and commits its updates to memory. The condition
that IBIS-D monitors for Ð a read of a tainted variable written during a prior, partial task execution
Ð breaks that guarantee and is a RIO bug.

IBIS-D explicitly maintains its taint-tracking metadata, maintaining two bits for each memory
location: a taint bit and a freshness bit2. The taint bit for an memory location is set if the location’s
address is written by a memory access that is control or data dependent on I/O. IBIS-D clears the
taint bit when execution reaches the end of the task and the update to the address is committed. The
freshness bit for an address is set along with the taint bit on an input-dependent write. IBIS-D clears
the freshness bit when the device reboots after a power failure. IBIS-D checks both bits before each
memory access and generates a bug report if the taint bit is set and the freshness bit is cleared.

Taint propagation also occurs through registers and IBIS-D maintains a shadow register file with
a taint bit for each register. IBIS-D sets the taint bit of a register if a tainted memory location is
loaded into it and clears it if a non-tainted address is loaded. If a tainted register is used when
updating a memory location, that memory location becomes tainted.

5.1.1 Instrumentation. IBIS-D’s instrumenting compiler adds calls to its runtime library into the
program’s code. IBIS-D uses a front-end LLVM compiler pass to insert library calls at memory access
instructions, control flow points, and calls to the annotated I/O functions. The front-end pass runs
before register allocation, precluding taint propagation for registers in the front end. To identify
registers through which taint propagates, IBIS-D has a second instrumentation phase after register
allocation. This phase examines each instruction and adds taint propagation instrumentation that
uses actual register names to manipulate the shadow register file that tracks taint.

2we track these bits for our 16-bit microcontroller’s 16-bit address space

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 183. Publication date: October 2019.

183:16 Milijana Surbatovich, Limin Jia, and Brandon Lucia

5.1.2 Runtime Library. The library provides APIs for memory access operations, control instruc-
tions, and calls to the annotated I/O functions. Calls to the library track freshness and taint propa-
gation dynamically during program execution by analyzing and manipulating the metadata bits
for each accessed memory location, detecting illegal uses of tainted variables written on previous
executions.
Get_taint(addr, dst_reg) Get_taint is instrumented on loads and determines if the address to
be loaded is currently tainted. If the taint bit of the address is set, then the function looks up the
freshness bit. If the taint bit is set and the freshness bit is not set, the system generates a bug report;
a program should not load a tainted value written by a previous execution attempt. The taint bit
for the destination register of the load is set if the address was tainted and cleared if it was not.
Handle_control(type, reg_map) handle_control is instrumented on control flow instructions.
The type parameter tells the function whether control branched or joined, and the reg_map

parameter gives a list of the registers used in computing the branch condition, if one exists. If
control branches and a register in the map is tainted, control flow dependent on I/O, and handle_-
control sets the control-dependence flag. We insert additional instrumentation at control-flow join
points that clear the control-dependence flag.
Decide_taint(addr, reg_map) Decide_taint is instrumented on stores and determines if the
destination address of the store should be marked as tainted. The parameter reg_map is a list of
the registers used in computing the value to be stored. The taint bit for the address is set if the
control-dependence flag is currently set or if any of the registers in the map are tainted. If the tainted
bit is set, the freshness bit is also set, since the value is being written on the current execution.
Set_taint(ret_reg) Set_taint is instrumented on calls to the annotated I/O functions, and sets
the taint bit of the return register of the call.
On_reboot and on_transition After transitioning between tasks, non-idempotent I/O values
written in the current task cannot change and are safe to use on subsequent execution attempts.
Immediately after the current task pointer is updated, on_transition clears the taint bit of any
addresses written by the completed task. After rebooting, no writes are fresh, so on_reboot clears
all the freshness bits.

5.1.3 Report to the Programmer. IBIS-D detects violations of the correctness invariant Ð accesses
to tainted data written on a prior execution Ð as they occur and outputs the address of the loaded
variable and the program counter. The programmer can use these to find the variable name and
line number of the violating read in the source code. Tracking and outputting more data, such
as the original taint source and branch like IBIS-S does, would incur costly runtime and memory
overheads. IBIS targets embedded devices that typically lack displays. Our implementation produces
reports over a serial UART link connected via USB to a workstation machine.

5.2 Static versus Dynamic Taint Tracking

IBIS-S and IBIS-D provide complementary benefits to the programmer. IBIS-S can quickly analyze
the entire program and provide detailed bug reports. Reporting the I/O source of the bug, the tainted
branch, and all potential non-idempotent writes helps the programmer reason about and fix the
root cause of the bug. As discussed in Section 4.4, IBIS-S can produce false positive reports and may
not explore all tainted code paths, especially if there is complicated aliasing. By contrast, IBIS-D
will not produce false positives, generating a report at an actual violating access only. As with any
dynamic analysis tool, IBIS-D produces no false negatives if IBIS-D is able to explore all possible
executions. To span the space of intermittent executions requires spanning the entire space of data
inputs to the program, and also exploring all possible points at which a power failure may occur.
Thoroughly exploring this space is a compelling topic for future intermittent systems research.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 183. Publication date: October 2019.

I/O Dependent Idempotence Bugs in Intermittent Systems 183:17

While dynamic analysis does have benefits, particularly in accuracy, dynamic tools that instrument
code have an inherent downside on intermittent systems. For task-based models or statically placed
checkpoints, the code in a task or between checkpoints has to be able to complete with one buffer
of energy to ensure forward progress. Estimating how much energy is needed for a region of code
to run is non trivial, and there are compiler tools to help the programmer write programs that
will complete [Colin and Lucia 2018]. Even if the programmer wrote a correct program that will
always finish, instrumenting a program with more runtime calls will increase the size of the tasks or
checkpointed regions and can break forward progress. This problem is not particular to IBIS-D but
is an outstanding problem for any instrumentation tools targeting intermittent systems. Verifying
that a transformation on an energy-safe program results in a program that is still energy-safe is
also a topic for future research.

6 SOFTWARE-BASED VALIDATION AND BUG FIXING

IBIS helps the programmer validate a reported bug by running the program in a software-based
intermittent execution emulator, enabling the programmer to directly observe the symptoms of a
failure caused by the bug. IBIS-S’ analysis can be integrated into existing runtimes to enable the
runtime to fix bugs with a little programmer effort, or it can provide the programmer with enough
information to reason about and fix the bug manually. We describe details of the validation system
in Section 6.1 and recommendations on using IBIS to assist in fixing bugs in differing runtime
systems in Section 6.2

6.1 Validation Sub-system

IBIS’s intermittent execution emulator allows the programmer to explicitly specify the in-code
locations of checkpoints and power-failure emulation points. The emulator also allows the pro-
grammer to mark data as residing in either non-volatile or volatile memory and to mark which
data to include in a checkpoint. The emulator executes the program on inputs generated using a
function provided by the programmer, and captures execution context (i.e., registers and stack)
and explicitly marked state at each checkpoint. When the emulator encounters a power-failure
emulation point, execution returns to the execution context set by the most recently executed
checkpoint, restoring all checkpointed data. The programmer can systematically or randomly place
checkpoints and power failure emulation points in their code and run in the emulator repeatedly.
They can provide random inputs or real traces to the emulator. If an execution in the emulator
causes a crash, incorrect output, or assertion failure, the programmer can study the emulated
execution to better understand the failure, IBIS’s bug report, and the bug fix.
We implemented the emulator in C++ to be portable. The implementations of power failure

emulation, checkpointing, and restart all rely on setjump and longjump. setjump emulates check-
pointing by saving the execution context from the point of its invocation to a jump buffer. longjump
takes a jump buffer as a parameter and reverts execution to the point specified by the buffer,
emulating an intermittent power failure that resumes at the checkpoint captured by setjump. A
variable updated between a setjump (checkpoint) and longjump (restart) retains its value, correctly
emulating the reboot behavior of non-volatile memory. To emulate variables in volatile memory
and checkpointed data in non-volatile memory, the emulator provides an access macro. For data
accessed with this macro, IBIS maintains an emulated volatile array, a key-value store that maps
addresses to their current value. The emulated volatile array maintains a checkpointed value for
each entry. At a checkpoint, the emulator copies each entry’s current value into its checkpointed
value. At a power failure, the emulator resets each entry’s current value to its checkpointed value.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 183. Publication date: October 2019.

183:18 Milijana Surbatovich, Limin Jia, and Brandon Lucia

6.2 Fixing Bugs with IBIS

IBIS-S can be used to guide fixing bugs as well as detecting them, both through programmer inter-
vention and augmenting existing intermittent runtimes. IBIS-D gives the programmer information
about where the program fails due to bugs reported by IBIS-S, but it does not provide as much
information about the root cause of the bug.
Tasks IBIS-S can be directly integrated into systems that use WAR analysis to detect and back-up
potentially inconsistent variables. IBIS-S’ taint tracking analysis can be combined with the existing
program analyses. The runtime mechanisms will then correctly restore the memory locations
updated non-idempotently through I/O dependencies. Any false positives that IBIS-S reports will
not make the runtime behave incorrectly, merely conservatively. This solution enables existing
systems to maintain both memory consistency and timeliness in the face of RIOs. Repeated I/O
operations can execute consistently without any task or checkpoint boundaries between the I/O
operation and the dependent branch. Note that this process is not fully automatic as the programmer
still needs to annotate each program with the input sources for IBIS’ analysis to run.
Checkpoints Checkpoint systems that back-up and restore variables [Lucia and Ransford 2015]
can be automatically fixed while preserving timeliness in the same manner as task-based systems.
Checkpoint systems that try to decompose programs into idempotent regions [Van Der Woude and
Hicks 2016] can use IBIS-S’ analysis to preserve memory consistency, however placing checkpoints
between I/O reads and uses of the I/O will break timeliness.
Manual Fixing IBIS’ reports provide programmers with with the specific code region and variables
that can become inconsistent, simplifying the debugging process. Depending on the timeliness
and atomicity constraints on the application, programmers can use this information to reinitialize
or back-up any critical variables, or to ensure that the I/O does not re-execute. IBIS can help
programmers determine possible root causes of the bug, but it is a bug detection tool, not a
debugging infrastructure.

7 EVALUATION

We evaluate IBIS on whether IBIS-S and IBIS-D can find input-dependent idempotence bugs in
real applications and do so efficiently and accurately. An associated goal is to investigate whether
these bugs appear in real applications using existing intermittent systems. There is no standard
benchmark suite for intermittent devices, so this evaluation assembles a collection of embedded
system code taken from several sources, including the Texas Instruments Real Time Operating
System (TI-RTOS) sensor drivers and application libraries [TI Inc. 2017b], and applications from
the literature [Colin and Lucia 2016; Maeng et al. 2017] obtained from the authors. Our evaluation
of the accuracy of IBIS-S’ analysis categorizes bug reports as true or false positives, showing that
IBIS-S reports very few or no false positives. IBIS-D is limited to benchmarks written in the Alpaca
language. We run the tool on Alpaca apps created from the TI-RTOS sensor drivers and the Alpaca
applications obtained from the authors. We evaluate IBIS-D on whether it detects the bugs that
IBIS-S reports as bugs (the true bug column in Table 2) and whether the dynamic taint tracking
overheads are reasonable for a development phase tool. We analyze the bug detection capability
of IBIS-D in relation to IBIS-S’ reports as techniques to fully explore the input space of programs
running intermittently is an area of future work.
Our evaluation shows that bugs due to input-dependent memory updates do occur on real

applications and will not be fixed by existing systems. IBIS detects them efficiently and accurately.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 183. Publication date: October 2019.

I/O Dependent Idempotence Bugs in Intermittent Systems 183:19

7.1 IBIS-S Benchmarks

Table 1. Application Characteristics. The origins (in

order): [Colin and Lucia 2016; Colin et al. 2018; Maeng

et al. 2017; Sample et al. 2008; TI Inc. 2017b]

Origin App LoC #Func. #Branch IO Ops.

T
I-
R
T
O
S

mpu 1136 43 227 37
hdc 256 14 33 2
bmp 363 12 72 11
opt 240 14 38 4
tmp 286 12 54 10
wsn 342 22 34 1
easylink 1120 36 267 10

WISP rfid 478 11 49 2
Capy prox 606 39 161 8

C
h
a
in
,
A
lp
a
ca

gesture 275 22 30 2
hmc 223 30 22 2
tempalarm 296 20 51 1
ar 530 20 107 1
bc 479 16 98 1
blowfish 509 23 113 1
cem 413 23 62 1
cuckoo 533 36 84 2
rsa 887 28 217 2

IBIS-S is evaluated on code written for real em-
bedded devices, summarized in Table 1. We in-
cluded code from TI-RTOS drivers and applica-
tion libraries [TI Inc. 2017b], WISP core library
code [Sample et al. 2008], Capybara sensor dri-
ver and application code [Colin et al. 2018], and
intermittent application benchmarks [Colin
and Lucia 2016; Maeng et al. 2017]. The TI-
RTOS code was not written for an intermittent
programming model, but we include them to
show the difficulty of porting embedded-C to
intermittent systems and to stand in for check-
pointed code. Checkpointing systems are in-
tended to work on C code with little or no mod-
ifications as discussed in Section 2.5, and pro-
grammers trying to port code-bases manually
will also start from unmodified existing C code.
We included the drivers for motion processing

(mpu), humidity (hdc), pressure (bmp), optical (opt), and thermopile (tmp) sensors. We also stud-
ied a library and application built using the TI-RTOS RF communications driver: easylink, a
high-level radio API, and wsn, a wireless sensor data aggregator. To analyze these programs on
our development machines, we abstracted or removed system calls or device specific pragmas
irrelevant to IBIS-S’ analysis. We assume that all variables are stored in non-volatile memory. From
libwispbase [Sample et al. 2008] we included rfid, an RFID EPC Gen2 [EPCglobal Inc. 2015]
decoder driver. We included prox, which is Capybara’s [Colin et al. 2018] driver for the APDS9600
proximity and gesture sensor. An important characteristic of these low-level code bases is that
porting them to use tasks [Colin and Lucia 2016; Maeng et al. 2017] or checkpoints [Balsamo
et al. 2015; Jayakumar et al. 2014; Van Der Woude and Hicks 2016] would be extremely difficult
because of subtle timing conditions and environmental interactions. The difficulty of using tasks or
checkpoints to handle potential idempotence violations increases the value of IBIS.
We also analyzed applications from prior work written using task-based intermittent sys-

tems [Colin and Lucia 2016; Maeng et al. 2017]. We analyzed three applications using Chain [Colin
and Lucia 2016]: gesture, hmc, and tempalarm ; and six applications using Alpaca [Maeng et al.
2017]: activity recognition ar, bit count bc, blowfish, a compression program cem, cuckoo, and
rsa encryption.

Table 1 shows characteristics of our benchmarks. The programs have an average of 498 lines of
code, ranging from 223 to 1136 lines. The average function count is 23 with a high of 43, and the
average number of branch instructions is 95. The majority of programs have one or two distinct
I/O operations, with the highest number being 37, in mpu.

7.2 IBIS-S Bug Detection Efficacy and Efficiency

The main results of our evaluation are summarized in Table 2. The first column is the number of
total reported bugs before filtering. Next columns are: the runtime in milliseconds, the number
of total reports, two types false positive reports (NoBg and NoUse), and true positive reports for
each filtering strategy (task and I/O point). We elaborate on the the false positives in Section 7.3.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 183. Publication date: October 2019.

183:20 Milijana Surbatovich, Limin Jia, and Brandon Lucia

IBIS-S is efficient: the run times for both filtering methods, shown in Table 2, are less than 0.1
seconds for all cases except prox. Prox takes longer partly because it has a high count of total
reports (31), most of which get filtered out. We note that the largest benchmark, mpu, has a low
runtime of 13.1 ms. Additionally, we eschewed implementation choices that can make static analysis
scale poorly, such as context-sensitive analysis and expensive alias analysis.

Table 2. Categories of false positives and true bugs based on filtering point, runtime in milliseconds.

NoFlt Task Filter I/O Filter

App Tot. R(ms) Tot. NoBg NoUse Bug R(ms) Tot. NoBg NoUse Bug Vld.

mpu 17 8.5 5 1 1 3 13.1 16 4 5 7 S
hdc 2 2.3 2 0 1 0 3.5 2 0 1 1 S
bmp 3 6.3 1 0 1 0 9.7 1 0 1 0 n/a
opt 3 2.4 1 0 0 1 3.5 1 0 0 1 S
tmp 3 5.8 3 0 1 2 8.7 3 0 1 2 S
wsn 6 3.7 1 0 0 1 4.5 3 0 0 3 S
elink 6 6.1 1 0 0 1 7.5 6 0 0 6 S
rfid 6 4.4 0 0 0 0 5.3 6 1 0 5 S
prox 31 165.9 4 0 0 4 231.8 10 3 2 5 S
gest 2 2.1 2 0 0 2 3.0 2 0 0 2 S
hmc 1 2.2 0 0 0 0 2.9 1 0 0 1 S
temp 0 1.5 0 0 0 0 2.2 0 0 0 0 n/a
ar 0 2.3 0 0 0 0 2.2 0 0 0 0 n/a
bc 0 19.6 0 0 0 0 25.2 0 0 0 0 n/a
bfish 0 1.7 0 0 0 0 2.5 0 0 0 0 n/a
cem 0 1.9 0 0 0 0 2.5 0 0 0 0 n/a
ckoo 0 11.4 0 0 0 0 16.2 0 0 0 0 n/a
rsa 0 7.9 0 0 0 0 11.8 0 0 0 0 n/a

The data show that the majority of OS, driver, and library code have at least one true bug,
ranging from zero (bmp) to seven (mpu). The presence of these bugs demonstrates the need for
IBIS in bringing important I/O support code to intermittent systems. Using existing systems to
port delicate, timing-sensitive OS-level code to intermittent systems will likely result in subtle I/O
related bugs. Programmers need IBIS’s help to detect these bugs and to reason directly about the
effect of I/O and input-dependent idempotence violations. In contrast, there are zero reports across
all but two of the task-based programs. The absence of bugs in these programs is unsurprising for
several reasons: the programs were written with tasks in mind, the programs do not make heavy
use of I/O, and the programs have intervening task boundaries between gathering the I/O and any
branches off of I/O dependent values. Table 2 also shows that filtering is effective at eliminating
reports for both strategies (more details in Section 7.4).

IBIS-S reports bugs with high accuracy, producing very few false positives (the difference between
column bug and Tot., or the sum of column NoBg and NoUse) after filtering. There are very few
false positives across applications, regardless of which filtering strategy IBIS uses. Many cases have
zero false positives, a few cases have just one or two, and mpu has the most (details in Section 7.3).

The last column shows the validation results. If all of a test case’s reported bugs were validated
using IBIS’s software validator (Section 6.1) the column contains an ’S’.

We did not report bugs found by IBIS-S to the developers, as many benchmarks are not currently
designed to run on intermittent systems and these bugs only manifest in the intermittent context.
IBIS is designed for future developers who want to target intermittent systems.

7.3 False Positives Classification

False positives are further broken down into two types: not-a-bug (NoBg) or no-use (NoUse). The
first type simply does not correspond to a bug: the reported input-dependent idempotence violation
does not lead to a failure. IBIS-S produced such reports for several of the sensor benchmarks: eight
total, with four and three for mag and prox respectively and one for rfid. Not-a-bug reports occur

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 183. Publication date: October 2019.

I/O Dependent Idempotence Bugs in Intermittent Systems 183:21

because reported operations do not leave state inconsistent or a failing execution is infeasible. For
example, in mpu IBIS-S’s analysis identifies a switch statement with a fall-through case that has a
different write set from the other cases and could lead to an idempotence violation. This switch
statement cannot lead to a failure, however, because an (implicit) constraint on the switch condition
variable prevents the fall-through from executing, making the failing execution infeasible.

The second type occurs when the program exhibits the bug pattern but the tainted data are
not used. For instance, in mpu, a variable val is both defined and used in the taken branch of an if
statement, but not used elsewhere. IBIS-S generates a bug report because val could be updated in
only one of the execution paths. However, since val is not used, an inconsistent write to it will not
manifest as a bug. IBIS generates such reports for several of the sensor driver benchmarks.

7.4 Effect of Filtering Reported Bugs

0
2
4
6
8

10

va
ria

bl
e

co
un

t

No filter

0
2
4
6
8

10

va
ria

bl
e

co
un

t

IO filter

Mag hdc bmp opt tmp wsn easylink rfid prox gesturehmc
0
2
4
6
8

10

va
ria

bl
e

co
un

t

Task filter

Fig. 7. The difference in bug reports and variable count depending on filtering point

Recall that filtering eliminates variables from a report by identifying sanitizing writes to those
variables; if filtering eliminates all variables from a report, the report itself is eliminated. The most
significant reduction is in prox, where moving from no filtering to task filtering reduces the total
number of reports from 31 to 4. Other applications (rfid and easylink) see significant decreases
(from 6 to 0 and from 6 to 1 respectively). These cases have sanitizing writes to tainted variables
occurring between the top of the function and the reported branch or the original I/O source and
the tainted branch are in different functions, making the I/O flow safe but untimely. I/O filtering
sees similar decreases in reports in many cases, although in some cases it eliminates fewer reports
than ToF filtering. For example, I/O filtering does not reduce the number of reports for easylink,
but task filtering removes all but one report.
While Table 2 shows that filtering is effective at eliminating reports, filtering also simplifies

remaining reports by eliminating sanitized variables from those reports. Figure 7 plots one bar per
report, with each bar indicating the number of variables in its report. The top plot is no filtering,

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 183. Publication date: October 2019.

183:22 Milijana Surbatovich, Limin Jia, and Brandon Lucia

the middle is I/O filtering, and the bottom is task filtering. The data show that filtering reduces
the number of reports ś there are fewer total bars in the plots for the filtering techniquesś and
that filtering simplifies reports ś some bars are shorter in the plots for the filtering techniques (e.g.,
reports for tmp, easylink, and mag). By simplifying reports, IBIS-S makes debugging simpler for
programmers.
Overall, task filtering is more effective than I/O filtering because the former permits a longer

span of code in which sanitizing writes may occur. This also explains why more true bugs exist
with I/O filtering than task filtering for mpu, easylink, and hmc.

7.5 IBIS-D Benchmarks

To detect bugs using IBIS-D, we needed to make the benchmarks execute on actual energy har-
vesting hardware. To create applications from the TI-RTOS benchmarks, we extracted the buggy
functions and turned them in to runnable applications using the Alpaca programming language
and runtime [Maeng et al. 2017]. We first extract all functions that contained a true bug with
task-filtering. Each function is then turned into a task and the tasks are connected into a logical ap-
plication. This procedure is necessary as most of the buggy programs were drivers whose functions
do not interact directly with each other. For example, mpu had bugs in a function that initializes the
calibration data and a function that reads the magnetometer, using the calibration data to scale the
values. In normal use, these would both be called by a higher-level application that is using the
sensor. The extracted app changes the two functions to tasks and connects them, adding a task that
uses the result of the read. The goal of the bug extraction is to preserve the key control and data
dependencies surrounding the bug pattern. To measure the overheads on realistic workloads, we
also run the tool over the Alpaca applications we obtained from the authors. We show a summary
of the application in Table 3. Apps that were created through bug extraction are marked with the
superscript x . The two Alpaca apps marked with an asterisk could not run on our system due to
device memory limitations.

Table 3. Summary of apps using the extracted code

App Extracted Functions App Description LoC

mpux Calibration Init, MagRead App initializes the calibration, reads data, uses the data 233

hdcx HdcRead App reads data, uses it 145

bmpx BmpRead, BmpConvert App reads raw data and converts it to useable format 263

optx OptRead App reads data, uses it 161

tmpx TmpRead App reads data, uses it 163

wsnx ProcessLoop, ReceivePacket, App receives a packet, processes it, 249

UpdateNode and adds it to a node list

elinkx ReceivePacket App receives a packet and processes it. 309

ar Entire App Activity Recognition 530

bc Entire App Bit Count 496

cem Entire App Compression App 429

cuckoo Entire App Cuckoo Hashing 533

rsa* ś ś ś

blowfish* ś ś ś

7.6 IBIS-D Bug Detection Efficacy and Efficiency

We summarize IBIS-D’s performance in Figure 8, which shows runtimes, and Table 5, which shows
a breakdown of the instrumented calls and bug detection results.

To gather run time information, we ran instrumented and unaltered versions of the applications
on both continuous and intermittent power. Gathering on continuous power gives the slowdown

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 183. Publication date: October 2019.

I/O Dependent Idempotence Bugs in Intermittent Systems 183:23

U I
mpux hdcx bmpx optx tempx wsnx elinkx ar bc cemcuckoo

U I
mpux hdcx bmpx optx tempx wsnx elinkx ar bc cemcuckoo

0

20

40

60

80

100

Sl
ow

do
wn

394 504 668 529 623

Normalized Runtimes
Continuous unaltered
Continuous instrumented
Intermittent unaltered
Intermittent instrumented
Recharge time

Fig. 8. Normalized runtime of instrumented and unaltered apps on both continuous and intermittent power

with identical inputs

directly caused by the instrumented runtime library, as it factors out the recharge time and the
code re-execution that occurs when the device runs intermittently. IBIS-D has an average of 25x
slowdown, which is in line with the slowdowns produced by other memory checking tools such as
Memcheck or TaintCheck [Nethercote and Seward 2007]. We show the normalized runtimes for the
benchmarks in Figure 8. The columns to the left of the dotted line are the slowdowns when running
on continuous power, with the left bar for an app denoting the unaltered code and the right bar
the instrumented code. The apps with the largest slowdowns, bmp-ext and cuckoo had tasks with
many frequently accessed local variables. Reserving registers for the runtime library parameters
caused frequent spilling of the local variables to the stack, resulting in a large slowdown.

To see how the increase in run time effects intermittent execution, we also gather the runtimes of
each app when running intermittently, shown on the right side of Figure 8. Each column denoting
an app running on harvested energy is broken into two segments - on time, denoted with a
purple color, when the device was running, and off time, denoted with grey, when the device was
recharging. All segments are normalized to the base runtime of the unaltered app on continuous
power. The grey segments that reach the top of the graph are cut off, with the true height noted in
the number overlaying the bar. Power failures and recharge times are actual, not simulated, and
are determined by the harvesting technology and physical environment. We can see that no matter
whether instrumented or unaltered, the total time spent executing the app is dominated by recharge
time. On average, each app spends 5.95 times as long charging as it does executing. Since the
instrumented apps are much longer, they also take more energy to run, increasing the number of
reboots necessary to run each app to completion. We show the number of reboots the instrumented
and unaltered versions of the app took in Table 4. Note that the proportions of the instrumented
reboot count to the unaltered reboot count are in line with the normalized slowdowns. The apps
that rebooted the most, e.g., bc or cuckoo, have the largest difference between the continuous
execution time and intermittent on time. This is because each reboot presupposes some amount of
re-executed code, making the total number of instructions executed larger. While this increase in
number of reboots and corresponding increase in runtime would definitely harm the performance
of deployed code, it does not necessarily hamper the practicality of IBIS-D. An intermittence bug

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 183. Publication date: October 2019.

183:24 Milijana Surbatovich, Limin Jia, and Brandon Lucia

can only be triggered if the device reboots, so causing more reboots on each run of an application
can help to find bugs.

Table 4. Summary of reboot count of the unaltered and instrumented version of each app

Version mpux hdcx bmpx optx tmpx wsnx elinkx ar bc cem cuckoo

Unaltered 6 4 2 3 5 4 5 3 4 3 4

Instrumented 37 32 106 23 61 23 17 136 299 193 323

We show a breakdown of the instrumentation calls executed in Table 5. Along with the number
of calls to each instrumented function, we show the number of control dependence tainted variables,
the number of data dependence tainted variables, and the number of variables cleared on task
transitions. The last column in Table 5 shows whether IBIS-D detected the bugs reported by IBIS-S.
We write "No bugs to confirm" for applications where IBIS-S did not report any bugs.

A key observation from the breakdown of instrumentation calls is that the full Alpaca applications
did not contain any variables tainted by a control dependence (i.e., the C. dep column is 0). All the
apps contained a task boundary before any control decisions off of I/O tainted variables since the
apps do not require fresh data. This finding corroborates that IBIS-S is correct in reporting zero
bugs across the Alpaca benchmarks as any RIO bugs will have control tainted variables, and is not
missing any due to the imprecision in the static analysis.

All the true bugs detected by IBIS-S with task-filtering enabled were detected by IBIS-D except
the one in elink, The tainted variables in elink were fields of a struct. Another field of the struct
was involved in a WAR dependency, so Alpaca backed-up the entire struct, performing more
conservatively than our software validation. IBIS-D correctly does not report a violation on variables
that have both a WAR and RIO dependency, since the inconsistency will be fixed by the runtime.
In the other applications, the bugs identified by IBIS-S did cause runtime memory violations that
Alpaca did not fix, breaking the desired transaction semantics of the runtime, and showing that I/O
idempotence violations are a real threat to correct intermittent applications.

Table 5. Runtime statistics of the apps

App #Get #Decide #Control #Set #C. dep # D. dep #Cleared Bugs Confirmed?

mpux 12149 7665 8873 1428 2448 1128 3060 Yes

hdcx 8267 5453 4625 1005 0 1212 1608 No bugs to confirm

bmpx 29043 13934 11229 2114 0 4536 3322 No bugs to confirm

optx 3785 2870 2345 408 714 516 1224 Yes

tmpx 39805 19609 30501 7272 8282 7884 6060 Yes

wsnx 7588 4115 5483 510 284 516 1375 Yes

elinkx 1845 2030 969 676 90 630 1324 Bug fixed by Alpaca

ar 53512 20604 35561 1512 0 2022 4032 No bugs to confirm

bc 113542 68304 65992 15 0 75 150 No bugs to confirm

cem 72110 55448 24143 128 0 390 768 No bugs to confirm

cuckoo 147753 105395 68197 1280 0 1286 2560 No bugs to confirm

8 CASE STUDIES

We found that I/O dependent idempotence bugs are most common in sensor drivers and low-
level client applicationsśtiming sensitive code that makes the bug difficult to fix with tasks or
checkpoints. We present three bugs that IBIS found in figure 9, showing the simplified source code
and bug-triggering execution traces. We discuss the consequences of the bugs and the challenges
of fixing them while preserving timeliness and atomicity. The first two case studies come from the
TI-RTOS mpu driver and the third from the libwispbase RFID decoder protocol.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 183. Publication date: October 2019.

I/O Dependent Idempotence Bugs in Intermittent Systems 183:25

i2cRead == true

calX = rawData

calY = rawData

i2cRead == false

return

Power fail

calX = new

calY = new

calZ = 0

int magRead(int* data){
int raw [7];
status = OK
if(i2cRead(&raw)){
data[0]=raw[1]|raw[0];
data[1]=raw[3]|raw[2];
data[2]=raw[5]|raw[4];
//calibration
data[0]=data[0]*calX;
data[1]=data[1]*calY;
data[2]=data[2]*calZ;
} else {
status = ERR;
}
return status;
}

void magInit() {
int raw[3];
if(i2cRead(&raw)){
calX=raw[0]+128;
calY=raw[1]+128;
calZ=raw[2]+128;
}
}

status = OK

i2cRead == true

data[0] = raw

data[1] = raw

status = OK

data[0] = raw

data[1] = raw

data[2] = 0

Power fail

(b) Mag Read
(a) Mag Init

i2cRead == false

status = ERR

return status

status = ERR

data[0] = raw

data[1] = raw

data[2] = 0

decode loop:
time = get_input()
switch(state){
case pre:
if time == valid:
state = data
else:
cmd = 0
state = pre

case data:
if time == valid:
cmd = 1
else:
cmd = 0
state = pre

}

calX = new

calY = new

calZ = 0

case pre

time == valid

state = data

case data

time != valid

cmd = 0

state = data

cmd = 0

Power fail

(c) RFID

case data

time == valid

cmd = 1

state = data

cmd = 1

non-idempotent

branch execution

values inconsistent

with last input

Legend

Fig. 9. Example bugs in real code. A solid arrow indicates a memory update caused by an instruction. A

dashed arrow indicates a data dependency from NV memory to a re-executed instruction

The Magnetometer Initialization Function This function initializes calibration data used to
scale reads from the magnetometer ((Figure 9(a)). The function checks that the sensor is powered
on and then conditionally reads from the I2C bus. If the read was successful, the raw data read is
stored into the X, Y, Z fields of the calibration structure. If the read was not successful, the function
simply returns.

The bug occurs if the first read is successful, the calibration fields are partially updated before the
power fails, and the second read is unsuccessful. On the first execution, the calX and calY fields
are set to the most recent data. On the second execution, none of the fields are updated, and calZ

remains inconsistent. The incorrect data will skew any future sensor reads, leading to incorrect
behavior or crashes. The fix is simple; initializing the calibration fields before reading the new data
will sanitize the variables on re-execution.

The Magnetometer Read Function This function reads data from the magnetometer (Figure 9
(b)). It performs checks to confirm that the magnetometer is ready, the buffer has not overflowed, and
the I2C bus read returned correctly. If all the checks pass, the program transfers the magnetometer
data stored in the temporary raw variable to the non-local data buffer, returning true. If a check
fails, the program returns an error value and stores nothing into the non-local buffer.

The pattern is similar to the initialization bug described above: the bug manifests if the checks are
passed and the data buffer is partially updated on the first execution, and on the second execution
a check fails and the program returns. A key difference is that this function can return an error
value. At first glance, this seems to render the data consistency issue moot: the programmer can
know that the data read failed. Programmers may make the assumption, however, that the data
buffer always contains the last successful sensor read, since the buffer is not touched if a check
fails. Consequently, the programmer may use the data buffer even if the last read failed. Notice that
this assumption is sound under continuous power and becomes invalid under intermittent power.
To fix this bug, the programmer can initialize the data buffer before the branch.

RFID Protocol The RFID decoder protocol is a highly timing-sensitive state machine, as the state
transitions to decode message preambles are based on the intervals between packet reception. If
an entire sequence of messages fits the correct intervals, the protocol will enter the data state
and interpret subsequent messages as the command. If any messages miss the correct interval,
the machine resets to the starting state. In Figure 9 (c), we show a simplified version of the state
machine with a preamble state and a data state.

The bug happens if a message with an invalid interval is received, and the program starts to reset
the variables. Before the actual state variable is reset, the power fails. On reboot, some variables are
consistent with the beginning of the protocol, such as the command variable, but the state machine
itself never transitioned. The next message received has a valid interval, so the machine incorrectly

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 183. Publication date: October 2019.

183:26 Milijana Surbatovich, Limin Jia, and Brandon Lucia

calls the set_command. This inconsistency can cause the machine to interpret a garbage sequence
of messages as valid command.

The state variable exhibits both WAR and RIO dependencies, but critical timing dependencies in
the protocol make it difficult to fix with tasks or checkpoints.

9 RELATED WORK

IBIS draws ideas from intermittent computing, program analysis (taint analysis in particular) and
pattern-based bug finding and is related to memory consistency for non-volatile memory systems
and fault tolerance in distributed systems. We discuss related work in each research area below.

Intermittent Computing Existing intermittent executionmodels are susceptible to I/O-dependent
idempotence violations, requiring IBIS’s support. Prior work collected automatic checkpoints [Bal-
samo et al. 2016, 2015; Jayakumar et al. 2014; Mirhoseini et al. 2013; Ransford et al. 2011], in some
cases targeting idempotence violations stemming fromWAR dependences [Bhatti and Mottola 2017;
Hicks 2017; Van Der Woude and Hicks 2016]. DINO [Lucia and Ransford 2015], Chain [Colin and
Lucia 2016] and Alpaca [Maeng et al. 2017] use tasks and buffer writes to ensure idempotent task
re-execution, despite WAR dependences. RESTOP [Rodriguez Arreola et al. 2018], Sytare [Berthou
et al. 2017], and Samoyed [Maeng and Lucia 2019] address retaining the state of peripheral devices.
InK [Yildirim et al. 2018] and Coati [Ruppel and Lucia 2019] address event driven programming in in-
termittent systems. No prior system considers RIOs or addresses the input-dependent idempotence
violations identified by IBIS.

IBIS provides support for validating bugs but not a debugging infrastructure, which is known
to be hard in intermittent systems. Programmers can use existing debugging frameworks such as
EDB [Colin et al. 2016] and Ekho [Zhang et al. 2011b].
Control-flow dependent bugs Non-idempotent control-flow dependent writes is a condition
of the bugs that IBIS identifies. Several projects have identified control-flow dependencies as a
key contributor to concurrency bugs or lack of bugs in distributed programs [Huang et al. 2014;
Machado et al. 2016]. They are orthogonal as IBIS focuses on intermittent, not concurrent systems.
Timeliness and Atomic Events Mayfly [Hester et al. 2017] uses tasks and was the first paper to
identify the timeliness problem for I/O in intermittent systems. Mayfly does not address the RIO
problem, though it is not susceptible to them as tasks variables can only write to volatile memory.
Capybara [Colin et al. 2018] is a HW/SW co-designed intermittent computing platform that enables
atomic and reactive software events. Homerun [Kang et al. 2018] is an energy-harvesting system
that supports atomicity for some I/O events. None of these systems considers the effect of RIO,
making them ineffective for preventing input-dependent idempotence violations.
Persistent Memory Persistent memory enables recovery after power failures, but its presence
introduces subtle software problems, especially in intermittent systems. Prior work studied how
to keep persistent memory consistent for heap objects [Coburn et al. 2011; Volos et al. 2011]
(including through the use of transactions), in-memory file systems [Dulloor et al. 2014], full
system state [Moraru et al. 2013; Narayanan and Hodson 2012] and non-volatile intermittent
processors [Ma et al. 2015a,b]. Prior modelling work [Pelley et al. 2014, 2015] defines persistency
models that enable reasoning about non-volatile data consistency, but does not explicitly deal with
intermittent execution nor I/O.
Taint Tracking, ProgramAnalysis and Pattern-based Bug Finding IBIS-S uses static program
analysis to find bugs because input-dependent idempotence violations match a clear, detectable
pattern. Pattern based bug detection has seen success finding data-races [Savage et al. 1997],
concurrency bugs [Lu et al. 2007a,b; Lucia and Ceze 2009; Lucia et al. 2010, 2011; Park et al. 2009,
2012, 2010; Shi et al. 2010], and performance bugs [Nistor et al. 2015, 2013]. Researchers have

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 183. Publication date: October 2019.

I/O Dependent Idempotence Bugs in Intermittent Systems 183:27

applied static analysis to help find and fix concurrency bugs [Zhang et al. 2013] or to aid in enabling
safe speculative parallelism, which considers similar correctness criteria to IBIS [Prabhu et al. 2010].
IBIS-S implements a coarse-grained static taint analysis to identify input-dependent branches.

Taint analysis has been widely used to identify security-critical bugs cause by un-sanitized inputs,
such as code injection attacks and format string vulnerabilities (e.g., [Jovanovic et al. 2010; Livshits
and Lam 2005; Machiry et al. 2017; Ming et al. 2015; Yamaguchi et al. 2015]). IBIS-S’ taint analysis
trades precision for efficiency.
Dynamic taint tracking has been used to track information flow and security vulnerabilities

at runtime [Chen and Kapravelos 2018; Enck et al. 2010; Lekies et al. 2013; Melicher et al. 2018].
IBIS-D is different from these systems in that it also tracks freshness.
Static analysis can also help validate intermittent systems via translation validation. Recent

work presents an algorithm for verifying that the translation from a continuous program to a
checkpointed intermittent system preserves program semantics [Dahiya and Bansal 2018]. This
approach is orthogonal to IBIS and could be extended to prove the correctness of bug fixes of
input-dependent idempotence violations in future work.
Idempotent Processing and Failure Atomicity Static analysis has been used to support idem-
potent processing [De Kruijf and Sankaralingam 2013; de Kruijf et al. 2012], which makes systems
robust to failures. Idempotence analysis has also been used to make more efficient logging mecha-
nisms for systems with persistent memory [Liu et al. 2018], and for implementing fault tolerance in
distributed systems [Ramalingam and Vaswani 2013]. Dividing programs into idempotent regions
precludes timeliness if inputs cannot be re-executed. JustDo logging [Izraelevitz et al. 2016] presents
a mechanism for failure-atomic updates to persistent memory, but it also avoids re-executing code
for better performance. Delay-Free concurrency [Ben-David et al. 2019] provides a construction
for automatically transforming concurrent programs to be crash-consistent on persistent mem-
ory, but it focuses on shared data structures. Intermittent systems need the entire program to be
checkpointed or in transactions, not just shared regions. IBIS has similar foundational ideas to
these works on fault tolerance, e.g., how to resume the system from a consistent state and how to
safely re-execute code manipulating persistent memory, but the resource and design constraints of
distributed systems are quite different than that of embedded intermittent systems.

10 CONCLUSION

To reliably use energy harvesting devices as sensing platforms, programmers need to be able to
reason about the effects of non-idempotent I/O, which is absent from prior work. This paper aims
to detect bugs caused by repeated I/O operations in intermittent systems and presents IBIS, the first
tool to characterize and detect bugs caused by non-idempotent I/O operations. IBIS finds instances
of I/O-dependent, idempotence bugs primarily in sensor drivers and low-level applications. Since
the timeliness constraints of OS level code make it difficult to use tasks or checkpoints, IBIS provides
useful, necessary information for programmers to develop reliable intermittent programs.

ACKNOWLEDGEMENTS

This work was funded in part by NSF Career Award 1751029.

REFERENCES

Henko Aantjes, Amjad Y Majid, Przemyslaw Pawełczak, Jethro Tan, Aaron Parks, and Joshua R Smith. 2017. Fast down-

stream to many (computational) RFIDs. In Proceedings of the 36th Annual IEEE International Conference on Computer

Communications (INFOCOM ’17).

Domenico Balsamo, Alex S Weddell, Anup Das, Alberto Rodriguez Arreola, Davide Brunelli, Bashir M Al-Hashimi, Geoff V

Merrett, and Luca Benini. 2016. Hibernus++: a self-calibrating and adaptive system for transiently-powered embedded

devices. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 35, 12 (2016), 1968ś1980.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 183. Publication date: October 2019.

183:28 Milijana Surbatovich, Limin Jia, and Brandon Lucia

Domenico Balsamo, Alex SWeddell, Geoff VMerrett, Bashir M Al-Hashimi, Davide Brunelli, and Luca Benini. 2015. Hibernus:

Sustaining computation during intermittent supply for energy-harvesting systems. IEEE Embedded Systems Letters 7, 1

(2015), 15ś18.

Naama Ben-David, Guy E. Blelloch, Michal Friedman, and Yuanhao Wei. 2019. Delay-Free Concurrency on Faulty Persistent

Memory. In Proceedings of the 31st ACM Symposium on Parallelism in Algorithms and Architectures (SPAA ’19). New York,

NY, USA, 12.

Gautier Berthou, Tristan Delizy, Kevin Marquet, Tanguy Risset, and Guillaume Salagnac. 2017. Peripheral state persistence

for transiently-powered systems. In Proceedings of the 2017 Global Internet of Things Summit (GIoTS ’17). IEEE.

Naveed Anwar Bhatti and Luca Mottola. 2017. HarvOS: Efficient code instrumentation for transiently-powered embedded

sensing. In Proceedings of the 16th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN

’17).

Quan Chen and Alexandros Kapravelos. 2018. Mystique: Uncovering Information Leakage from Browser Extensions. In

Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security (CCS ’18). ACM, New York,

NY, USA, 1687ś1700.

Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta, Ranjit Jhala, and Steven Swanson. 2011.

NV-Heaps: Making Persistent Objects Fast and Safe with Next-generation, Non-volatile Memories. In Proceedings of the

Sixteenth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS

XVI).

Alexei Colin, Graham Harvey, Brandon Lucia, and Alanson P. Sample. 2016. An Energy-interference-free Hardware-Software

Debugger for Intermittent Energy-harvesting Systems. In Proceedings of the Twenty-First International Conference on

Architectural Support for Programming Languages and Operating Systems (ASPLOS ’16).

Alexei Colin and Brandon Lucia. 2016. Chain: Tasks and Channels for Reliable Intermittent Programs. In Proceedings of the

ACM International Conference on Object Oriented Programming Systems Languages and Applications (OOPSLA ’16).

Alexei Colin and Brandon Lucia. 2018. Termination checking and task decomposition for task-based intermittent programs.

In Proceedings of the 27th International Conference on Compiler Construction (CC ’18).

Alexei Colin, Emily Ruppel, and Brandon Lucia. 2018. A Reconfigurable Energy Storage Architecture for Energy-harvesting

Devices. In Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS ’18).

Manjeet Dahiya and Sorav Bansal. 2018. Automatic Verification of Intermittent Systems. In Verification, Model Checking,

and Abstract Interpretation, Isil Dillig and Jens Palsberg (Eds.). Cham.

Marc De Kruijf and Karthikeyan Sankaralingam. 2013. Idempotent code generation: Implementation, analysis, and evaluation.

In Proceedings of the 2013 IEEE/ACM International Symposium on Code Generation and Optimization (CGO ’13).

Marc A. de Kruijf, Karthikeyan Sankaralingam, and Somesh Jha. 2012. Static Analysis and Compiler Design for Idempotent

Processing. In Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI ’12).

Subramanya R Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson.

2014. System software for persistent memory. In Proceedings of the Ninth European Conference on Computer Systems

(EuroSys ’14).

William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth. 2010.

TaintDroid: An Information-flow Tracking System for Realtime Privacy Monitoring on Smartphones. In Proceedings of

the 9th USENIX Conference on Operating Systems Design and Implementation (OSDI’10). Berkeley, CA, USA, 393ś407.

EPCglobal Inc. 2015. EPC Radio-Frequency Identity Protocols Generation-2 UHF RFID. https://www.gs1.org/sites/default/

files/docs/epc/Gen2_Protocol_Standard.pdf.

Xiaochen Guo, Engin Ipek, and Tolga Soyata. 2010. Resistive Computation: Avoiding the Power Wall with Low-leakage,

STT-MRAM Based Computing. SIGARCH Computer Architecture News 38, 3 (June 2010), 371ś382.

Josiah Hester and Jacob Sorber. 2017. Flicker: Rapid Prototyping for the Batteryless Internet-of-Things. In Proceedings of the

15th ACM Conference on Embedded Network Sensor Systems (EnSys ’17).

Josiah Hester, Kevin Storer, and Jacob Sorber. 2017. Timely Execution on Intermittently Powered Batteryless Sensors. In

Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems (EnSys ’17).

Matthew Hicks. 2017. Clank: Architectural Support for Intermittent Computation. In Proceedings of the 44th Annual

International Symposium on Computer Architecture (ISCA ’17).

Jeff Huang, Patrick O’Neil Meredith, and Grigore Rosu. 2014. Maximal Sound Predictive Race Detection with Control Flow

Abstraction. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI ’14). 337ś348.

Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. 2016. Failure-Atomic Persistent Memory Updates via JUSTDO Logging.

In Proceedings of the Twenty-First International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS ’16). New York, NY, USA, 16.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 183. Publication date: October 2019.

https://www.gs1.org/sites/default/files/docs/epc/Gen2_Protocol_Standard.pdf
https://www.gs1.org/sites/default/files/docs/epc/Gen2_Protocol_Standard.pdf

I/O Dependent Idempotence Bugs in Intermittent Systems 183:29

Hrishikesh Jayakumar, Arnab Raha, and Vijay Raghunathan. 2014. QuickRecall: A low overhead HW/SW approach for

enabling computations across power cycles in transiently powered computers. In Proceedings of the 27th International

Conference on VLSI Design and 2014 13th International Conference on Embedded Systems.

Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. 2010. Static Analysis for Detecting Taint-style Vulnerabilities in

Web Applications. J. Comput. Secur. 18, 5 (Sept. 2010), 861ś907.

Chih-Kai Kang, Chun-Han Lin, Pi-Cheng Hsiu, and Ming-Syan Chen. 2018. HomeRun: HW/SW Co-Design for Program

Atomicity on Self-Powered Intermittent Systems. In Proceedings of the International Symposium on Low Power Electronics

and Design (ISLPED ’18). Article 29.

Sukun Kim, Shamim Pakzad, David Culler, James Demmel, Gregory Fenves, Steven Glaser, and Martin Turon. 2007. Health

Monitoring of Civil Infrastructures Using Wireless Sensor Networks. In Proceedings of the 6th International Conference on

Information Processing in Sensor Networks (IPSN ’07).

Sebastian Lekies, Ben Stock, and Martin Johns. 2013. 25 million flows later: large-scale detection of DOM-based XSS. In

Proceedings of the 2013 ACM SIGSAC conference on Computer and communications security (CCS ’13). ACM, New York, NY,

USA, 1193ś1204.

Q. Liu, J. Izraelevitz, S. K. Lee, M. L. Scott, S. H. Noh, and C. Jung. 2018. iDO: Compiler-Directed Failure Atomicity for

Nonvolatile Memory. In Proceedings of the 51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO

51). 258ś270.

V. Benjamin Livshits and Monica S. Lam. 2005. Finding Security Vulnerabilities in Java Applications with Static Analysis. In

Proceedings of the 14th Conference on USENIX Security Symposium (USENIX Security ’05).

Shan Lu, Soyeon Park, Chongfeng Hu, Xiao Ma, Weihang Jiang, Zhenmin Li, Raluca A. Popa, and Yuanyuan Zhou. 2007a.

MUVI: Automatically Inferring Multi-variable Access Correlations and Detecting Related Semantic and Concurrency

Bugs. In Proceedings of the Twenty-first ACM SIGOPS Symposium on Operating Systems Principles (SOSP ’07).

Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. 2007b. AVIO: Detecting Atomicity Violations via Access-Interleaving

Invariants. IEEE Micro 27, 1 (Jan. 2007), 26ś35.

Brandon Lucia and Luis Ceze. 2009. Finding Concurrency Bugs with Context-aware Communication Graphs. In Proceedings

of the 42Nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 42).

Brandon Lucia, Luis Ceze, and Karin Strauss. 2010. ColorSafe: Architectural Support for Debugging and Dynamically

Avoiding Multi-variable Atomicity Violations. In Proceedings of the 37th Annual International Symposium on Computer

Architecture (ISCA ’10).

Brandon Lucia and Benjamin Ransford. 2015. A Simpler, Safer Programming and Execution Model for Intermittent Systems.

In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’15).

Brandon Lucia, Benjamin P.Wood, and Luis Ceze. 2011. Isolating andUnderstanding Concurrency Errors Using Reconstructed

Execution Fragments. In Proceedings of the 32Nd ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI ’11).

Kaisheng Ma, Xueqing Li, Mahmut Taylan Kandemir, Jack Sampson, Vijaykrishnan Narayanan, Jinyang Li, Tongda Wu,

Zhibo Wang, Yongpan Liu, and Yuan Xie. 2018. NEOFog: Nonvolatility-Exploiting Optimizations for Fog Computing.

In Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS ’18).

Kaisheng Ma, Xueqing Li, Shuangchen Li, Yongpan Liu, John Jack Sampson, Yuan Xie, and Vijaykrishnan Narayanan. 2015a.

Nonvolatile processor architecture exploration for energy-harvesting applications. IEEE Micro 35, 5 (2015), 32ś40.

Kaisheng Ma, Yang Zheng, Shuangchen Li, Karthik Swaminathan, Xueqing Li, Yongpan Liu, Jack Sampson, Yuan Xie, and

Vijaykrishnan Narayanan. 2015b. Architecture exploration for ambient energy harvesting nonvolatile processors. In

Proceedings of the IEEE 21st International Symposium on High Performance Computer Architecture (HPCA ’15).

Nuno Machado, Brandon Lucia, and Luís Rodrigues. 2016. Production-guided Concurrency Debugging. In Proceedings of the

21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP ’16). 29:1ś29:12.

AravindMachiry, Chad Spensky, Jake Corina, Nick Stephens, Christopher Kruegel, and Giovanni Vigna. 2017. DR. CHECKER:

A Soundy Analysis for Linux Kernel Drivers. In Proceedings of the 26th USENIX Security Symposium (USENIX Security

’17). Vancouver, BC.

Kiwan Maeng, Alexei Colin, and Brandon Lucia. 2017. Alpaca: Intermittent Execution Without Checkpoints. Proc. ACM

Program. Lang. 1, OOPSLA, Article 96 (Oct. 2017), 96:1ś96:30 pages.

Kiwan Maeng and Brandon Lucia. 2019. Supporting Peripherals in Intermittent Systems with Just-In-Time Checkpoints. In

Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’19).

William Melicher, Anupam Das, Mahmood Sharif, Lujo Bauer, and Limin Jia. 2018. Riding out DOMsday: Towards Detecting

and Preventing DOM Cross-Site Scripting. 2018 Network and Distributed System Security Symposium (NDSS) (Feb 2018).

Jiang Ming, Dinghao Wu, Gaoyao Xiao, Jun Wang, and Peng Liu. 2015. TaintPipe: Pipelined Symbolic Taint Analysis. In

Proceedings of the 24th USENIX Security Symposium (USENIX Security ’15).

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 183. Publication date: October 2019.

183:30 Milijana Surbatovich, Limin Jia, and Brandon Lucia

Azalia Mirhoseini, Ebrahim M Songhori, and Farinaz Koushanfar. 2013. Idetic: A high-level synthesis approach for enabling

long computations on transiently-powered ASICs. In Proceedings of the 2013 IEEE International Conference on Pervasive

Computing and Communications (PerCom ’13).

Iulian Moraru, David G Andersen, Michael Kaminsky, Niraj Tolia, Parthasarathy Ranganathan, and Nathan Binkert. 2013.

Consistent, durable, and safe memory management for byte-addressable non volatile main memory. In Proceedings of the

First ACM SIGOPS Conference on Timely Results in Operating Systems (TRIOS ’13).

Dushyanth Narayanan and Orion Hodson. 2012. Whole-system Persistence. In Proceedings of the Seventeenth International

Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS XVII).

Nicholas Nethercote and Julian Seward. 2007. Valgrind: A Framework for Heavyweight Dynamic Binary Instrumentation.

In Proceedings of the 28th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’07).

ACM, New York, NY, USA, 89ś100.

Adrian Nistor, Po-Chun Chang, Cosmin Radoi, and Shan Lu. 2015. Caramel: Detecting and Fixing Performance Problems

That Have Non-intrusive Fixes. In Proceedings of the 37th International Conference on Software Engineering - Volume 1

(ICSE ’15). Piscataway, NJ, USA.

Adrian Nistor, Linhai Song, Darko Marinov, and Shan Lu. 2013. Toddler: Detecting Performance Problems via Similar

Memory-access Patterns. In Proceedings of the 2013 International Conference on Software Engineering (ICSE ’13). Piscataway,

NJ, USA.

Soyeon Park, Shan Lu, and Yuanyuan Zhou. 2009. CTrigger: Exposing Atomicity Violation Bugs from Their Hiding Places.

In Proceedings of the 14th International Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS XIV).

Sangmin Park, Richard Vuduc, and Mary Harrold. 2012. UNICORN: A unified approach for localizing non-deadlock

concurrency bugs. In Software Testing, Verification and Reliability, Vol. 25.

Sangmin Park, Richard W. Vuduc, and Mary Jean Harrold. 2010. Falcon: Fault Localization in Concurrent Programs. In

Proceedings of the 32Nd ACM/IEEE International Conference on Software Engineering - Volume 1 (ICSE ’10).

Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. 2014. Memory Persistency. In Proceedings of the 41st Annual

International Symposium on Computer Architecuture (ISCA ’14). Piscataway, NJ, USA.

Steven Pelley, Peter M Chen, and Thomas FWenisch. 2015. Memory Persistency: Semantics for Byte-Addressable Nonvolatile

Memory Technologies. IEEE Micro 35, 3 (2015), 125ś131.

Prakash Prabhu, Ganesan Ramalingam, and Kapil Vaswani. 2010. Safe Programmable Speculative Parallelism. ACM SIGPLAN

Notices 45, 50ś61.

Proteus Digital Health. 2015. Proteus Digital Health. http://www.proteus.com/.

G. Ramalingam and Kapil Vaswani. 2013. Fault Tolerance via Idempotence. Principles of Programming Languages (POPL)

(January 2013). https://www.microsoft.com/en-us/research/publication/fault-tolerance-via-idempotence/

Benjamin Ransford, Jacob Sorber, and Kevin Fu. 2011. Mementos: System Support for Long-running Computation on

RFID-scale Devices. In Proceedings of the Sixteenth International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS XVI).

Alberto Rodriguez Arreola, Domenico Balsamo, Geoff V Merrett, and Alex S Weddell. 2018. RESTOP: Retaining External

Peripheral State in Intermittently-Powered Sensor Systems. Sensors 18, 1 (2018), 172.

Emily Ruppel and Brandon Lucia. 2019. Transactional Concurrency for Intermittent Systems. In Proceedings of the 40th

ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’19).

Alanson P Sample, Daniel J Yeager, Pauline S Powledge, Alexander V Mamishev, and Joshua R Smith. 2008. Design of an

RFID-based battery-free programmable sensing platform. IEEE Transactions on Instrumentation and Measurement 57, 11

(2008).

Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas Anderson. 1997. Eraser: A Dynamic Data

Race Detector for Multithreaded Programs. ACM Trans. Comput. Syst. 15, 4 (Nov. 1997), 391ś411.

Yao Shi, Soyeon Park, Zuoning Yin, Shan Lu, Yuanyuan Zhou, Wenguang Chen, and Weimin Zheng. 2010. Do I Use the

Wrong Definition?: DeFuse: Definition-use Invariants for Detecting Concurrency and Sequential Bugs. In Proceedings of

the ACM International Conference on Object Oriented Programming Systems Languages and Applications (OOPSLA ’10).

Jethro Tan, Przemysław Pawełczak, Aaron Parks, and Joshua R Smith. 2016. Wisent: Robust downstream communication

and storage for computational RFIDs. In Proceedings of the 35th Annual IEEE International Conference on Computer

Communications (INFOCOM ’16).

TI Inc. 2017a. MSP430FR59xx Mixed-Signal Microcontrollers (Rev. F). http://www.ti.com/lit/ds/symlink/msp430fr5969.pdf.

TI Inc. 2017b. TI-RTOS: Real-Time Operating System (RTOS) for Microcontrollers (MCU). http://www.ti.com/tool/ti-rtos-

mcu Accessed: 2018-05-08.

Joel Van Der Woude and Matthew Hicks. 2016. Intermittent computation without hardware support or programmer

intervention. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’16).

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 183. Publication date: October 2019.

http://www.proteus.com/
https://www.microsoft.com/en-us/research/publication/fault-tolerance-via-idempotence/
http://www.ti.com/lit/ds/symlink/msp430fr5969.pdf
http://www.ti.com/tool/ti-rtos-mcu
http://www.ti.com/tool/ti-rtos-mcu

I/O Dependent Idempotence Bugs in Intermittent Systems 183:31

Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011. Mnemosyne: Lightweight Persistent Memory. In Proceedings

of the Sixteenth International Conference on Architectural Support for Programming Languages and Operating Systems

(ASPLOS XVI).

Fabian Yamaguchi, Alwin Maier, Hugo Gascon, and Konrad Rieck. 2015. Automatic Inference of Search Patterns for

Taint-Style Vulnerabilities. In Proceedings of the 2015 IEEE Symposium on Security and Privacy (SP ’15).

Kasim Sinan Yildirim, Amjad Yousef Majid, Dimitris Patoukas, Koen Schaper, Przemyslaw Pawelczak, and Josiah Hester. 2018.

InK: Reactive Kernel for Tiny Batteryless Sensors. In Proceedings of the 16th ACM Conference on Embedded Networked

Sensor Systems (SenSys ’18). New York, NY, USA, 41ś53.

Zac Manchester. 2015. KickSat. http://zacinaction.github.io/kicksat/.

Hong Zhang, Jeremy Gummeson, Benjamin Ransford, and Kevin Fu. 2011a. Moo: A batteryless computational RFID and

sensing platform. Department of Computer Science, University of Massachusetts Amherst., Tech. Rep (2011).

Hong Zhang, Mastooreh Salajegheh, Kevin Fu, and Jacob Sorber. 2011b. Ekho: Bridging the Gap Between Simulation and

Reality in Tiny Energy-harvesting Sensors. In Proceedings of the 4th Workshop on Power-Aware Computing and Systems

(HotPower ’11). Article 9.

Wei Zhang, Marc de Kruijf, Ang Li, Shan Lu, and Karthikeyan Sankaralingam. 2013. ConAir: Featherweight Concurrency

Bug Recovery via Single-threaded Idempotent Execution. In Proceedings of the Eighteenth International Conference on

Architectural Support for Programming Languages and Operating Systems (ASPLOS ’13).

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 183. Publication date: October 2019.

http://zacinaction.github.io/kicksat/

	Abstract
	1 Introduction
	2 Background and Motivating Example
	2.1 Computing in Energy Harvesting Devices
	2.2 Non-idempotency Caused by WAR
	2.3 Non-idempotency Caused by RIOs
	2.4 Nuances in Fixing Idempotence Bugs Caused by RIO
	2.5 Workflow of Using Existing Intermittent Systems and IBIS' Use-case

	3 System Overview
	3.1 Design Assumptions
	3.2 Programmer-supplied Input Annotations
	3.3 IBIS-S: Finding I/O Bugs Statically
	3.4 Failure Validation
	3.5 IBIS-D: Finding I/O Bugs Dynamically
	3.6 Correctness Criteria and Bug Definition

	4 Bug Identification and Reporting in IBIS-S
	4.1 Top-level Taint Analysis
	4.2 Bug Pattern Detection
	4.3 Filtering Detected Bugs
	4.4 Soundness and Limitations
	4.5 Implementing a Sound Algorithm

	5 IBIS-D: Dynamically Detecting RIO Bugs at Run Time
	5.1 Design and Implementation
	5.2 Static versus Dynamic Taint Tracking

	6 Software-Based Validation and Bug Fixing
	6.1 Validation Sub-system
	6.2 Fixing Bugs with IBIS

	7 Evaluation
	7.1 IBIS-S Benchmarks
	7.2 IBIS-S Bug Detection Efficacy and Efficiency
	7.3 False Positives Classification
	7.4 Effect of Filtering Reported Bugs
	7.5 IBIS-D Benchmarks
	7.6 IBIS-D Bug Detection Efficacy and Efficiency

	8 Case Studies
	9 Related Work
	10 Conclusion
	References

