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Batteryless energy-harvesting devices enable computing in inaccessible environments, at a cost to programma-

bility and correctness. These devices operate intermittently as energy is available, using a recovery system to

save and restore state. Some program tasks must execute atomically w.r.t. power failures, re-executing if power

fails before completion. Any re-execution should typically be idempotent—its behavior should match the be-

havior of a single execution. Thus, a key aspect of correct intermittent execution is identifying and recovering

state causing undesired non-idempotence. Unfortunately, past intermittent systems take an ad-hoc approach,

using unsound dataflow analyses or conservatively recovering all written state. Moreover, no prior work

allows the programmer to directly specify idempotence requirements (including allowable non-idempotence).

We present Curricle, the first type system approach to safe intermittence, for Rust. Type level reasoning allows

programmers to express requirements and retains alias information crucial for sound analyses. Curricle uses

information flow and type qualifiers to reject programs causing undesired non-idempotence. We implement

Curricle’s type system on top of Rust’s compiler, evaluating the prototype on benchmarks from prior work. We

find that Curricle benefits application programmers by allowing them to express idempotence requirements

that are checked to be satisfied, and that targeting programs checked with Curricle allows intermittent system

designers to write simpler recovery systems that perform better.
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1 INTRODUCTION
Batteryless energy-harvesting devices (EHDs) enable sensing and computing in harsh or inaccessible

environments where battery maintenance is infeasible, such as space [Lucia et al. 2021; NASA 2019],

civil infrastructure monitoring [Adkins et al. 2016], and in-/on-body health sensors [Curtiss et al.

2022; iota Biosciences 2022]. In lieu of a battery, an EHD harvests energy from its environment

into a capacitor, powering on and operating only after collecting sufficient energy. As the device

operates, it executes applications that sense, compute, and communicate, quickly consuming the

energy. Once the energy is depleted, the device powers off until it can recharge and begin the cycle

anew. To execute programs through frequent, arbitrarily-timed power failures, an EHD typically
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uses a mixture of volatile (e.g., SRAM) and non-volatile memory (e.g., FRAM [TI Inc. 2014], STT-

MRAM [Gobieski et al. 2019; Guo et al. 2010]). Mixed volatility requires intermittent system support

to recover volatile execution state (e.g., registers) and to ensure non-volatile data remain consistent.

Maintaining correctness in an intermittent execution is challenging. Some program tasks, e.g.,

accessing sensor peripherals or timely data processing, must execute atomically w.r.t. power

failures [Kortbeek et al. 2020b; Maeng and Lucia 2019; Surbatovich et al. 2021], re-executing

if interrupted by power failure. For correctness, any re-execution should be idempotent unless
otherwise specified by the programmer—a partial execution followed by a complete execution

should have the same result as a single, complete execution. Past work identified that certain

write-after-read (WAR) [Lucia and Ransford 2015; Van Der Woude and Hicks 2016] and repeated-
input-operation (RIO) [Rodriguez Arreola et al. 2018; Surbatovich et al. 2020] access patterns cause

re-execution to be non-idempotent. For example, if a variable 𝑥 is stored in non-volatile memory,

re-executing the WAR 𝑥 := 𝑥 + 1 will cause 𝑥 to be incremented twice. If a program’s paths branch

on input, that input could produce a different value on re-execution, causing both paths to execute.

To enable idempotent execution, the recovery system must save and restore variables involved in

WARs and RIOs, alongwith volatile state. Past work has followed twomain strategies: conservatively

restoring all written state [Kortbeek et al. 2020a,b; Maeng and Lucia 2020; Ruppel and Lucia 2019] or

using dataflow analysis on the CFG to identify the variables involved inWAR and RIO patterns [Lucia

and Ransford 2015; Maeng et al. 2017; Surbatovich et al. 2021, 2020; Van Der Woude and Hicks

2016]. A disadvantage of restoring all written state is its time and energy overhead. A disadvantage

of the dataflow approach is that frequently system designers trade off correctness for performance,

due to pointer aliasing. Most prior work in intermittent computing targets C, in which unsafe

pointers make sound alias analysis extremely conservative. To counter this conservatism, many

systems require programmers to adhere to informally-specified, unchecked restrictions (e.g., no

pointer arithmetic [Kortbeek et al. 2020b], no function pointers [Maeng et al. 2017]). Moreover, no

prior work allows the programmer to specify that data should be manipulated non-idempotently,
which is a requirement in some applications (e.g., tracking partial peripheral interactions) and in

intermittent systems code (e.g., counting reboots). EHDs are designed for remote, low-maintenance

deployment, requiring reliability and adherence to a specific (i.e., formal) correctness definition.

Unfortunately, today’s intermittent systems programmer cannot express idempotence requirements

and must depend on systems with needless overheads or unsound analyses.

To enable programmers to build correct systems that meet application requirements, we present

Curricle. Curricle consists of the first type system for safe intermittent computing, a core calculus

based on a subset of Rust, and an abstract requirements specification of an intermittent recovery

system. Curricle enables a programmer to express idempotence requirements via types. Building

Curricle on top of the typed, memory-safe language Rust allows precisely analyzing read and

write accesses at the type level, without assuming the programmer follows unchecked restrictions.

Providing an abstract recovery system specification separates reasoning about what state should
be saved, identified by Curricle type inference, from low-level details about how state is saved; if a

program type checks, it will run correctly on any intermittent system that meets Curricle’s simple

specification, regardless of the implementation mechanism (e.g., undo vs redo logging).

Curricle uses information flow typing and type qualifiers denoting access modes to reason about

idempotence and input taintedness, inferring which variables must be recovered to satisfy the

programmer’s idempotence requirements. It augments data types with a pair of qualifiers denoting

idempotence level– idempotent or non-idempotent–and input dependence, tainted or not-tainted. For
example, a variable 𝑥 of type 𝑖𝑛𝑡@⟨Id,Nt⟩ is idempotent and not tainted. If the programmer wants

𝑥 to be non-idempotent, they can type it as 𝑖𝑛𝑡@⟨Nid,Nt⟩. As Curricle allows the programmer

to specify variables as non-idempotent, its correctness theorem follows from non-interference.
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Fig. 2. Memory inconsistency caused by write-after-
reads (WAR) and repeated-input-ops (RIO)

Non-interference requires equivalence between idempotent variables only, which is more general

than and entails the full equivalence defined in past work [Surbatovich et al. 2020]. We implement

the Curricle type system using Rust procedural macros and evaluate the prototype on benchmarks

ported from prior work, finding that Curricle is beneficial to both intermittent system designers and

application programmers. Targeting Curricle combines the advantages of prior approaches, enabling

a recovery system to reduce dynamically logged locations up to 0.5𝑥 and memory footprint up to

0.6𝑥 , compared to a system that logs everything, without requiring the system designer to provide

complex dataflow analyses. Programmers can express sophisticated idempotence requirements and

have assurance that their program will execute correctly. In summary, our contributions are:

• The first type system to check if programs will execute correctly intermittently, and a

correctness theorem following from non-interference

• An abstract requirements specification for the underlying system that decouples correctness

reasoning from the implementation mechanics

• An implementation of the type system for Rust, enabling programmers to specify their

idempotence requirements without assuming unchecked program properties

• An evaluation showing that Curricle allows for simpler, more efficient system implementa-

tions, while giving application programers assurance their programs will execute correctly

For space, we put most definitions and proofs in the companion Appendix [Surbatovich et al. 2023].

2 BACKGROUND & MOTIVATION
We discuss intermittent computing basics and the weaknesses of current approaches, motivating the

need to distinguish between application correctness requirements—i.e., which data to save/restore

—and requirements of the underlying recovery system—i.e., how to save/restore state correctly.

2.1 Intermittent Computing: When,What, and How to Recover from Power Failures
An intermittently executing program makes progress as energy is available. Figure 1 shows how

device energy (plotted as capacitor voltage) varies with time. A device harvests energy from its

environment (e.g., sun, radio waves), buffering energy in a capacitor. When fully charged, the device

begins operating, consuming energy (green). When depleted, the device powers off (red), volatile

state clears, and non-volatile state persists. To make progress and run correctly intermittently, a

device requires a recovery system to handle power failures. The recovery system design determines

when to recover, what state to recover, and how to recover that state.

Intermittent Execution Models: the When. Just-in-time (JIT) checkpointing [Balsamo et al.

2016, 2015] and atomic regions (aka tasks) [Hester et al. 2017; Lucia and Ransford 2015; Maeng

et al. 2017; Maeng and Lucia 2018; Ruppel and Lucia 2019; Van Der Woude and Hicks 2016] are two

common intermittent execution models. The bottom of Figure 1 illustrates these two models with

the aid of the code snippet on the left. The code reads an input into t, sets h if the value is too high,

and otherwise sets l. The program then increments the counter c.
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A JIT checkpoint scheme saves state just before power failure, which the system detects using

voltage monitoring hardware. After reboot, the system restores execution to just before the failure.

The top of Figure 1 shows such an execution. The trace sees an input value of four and checks the

branch. Then, energy is exhausted and the system saves state. On reboot, the trace sets the low

flag and updates the counter. The advantage of JIT checkpoints is that they are simple and save a

small amount of state, resulting in better performance and few code changes. The disadvantage

of JIT checkpoints is that checkpoint placement is arbitrary, leading to an abrupt interruption

and arbitrary delay before reboot, which may not be well-tolerated by code. Peripheral state

may be left inconsistent, resulting in crashes [Berthou et al. 2017; Branco et al. 2019; Maeng and

Lucia 2019; Rodriguez Arreola et al. 2018], and time-constrained sensor data may become stale or

inconsistent [Hester et al. 2017; Kortbeek et al. 2020b; Surbatovich et al. 2021].

An atomic region scheme ensures that if power fails, execution resumes from the start of the

atomic region, potentially leading to the re-execution of some operations, as shown in Figure 1,

lower. After gathering input and checking the branch, energy is exhausted. On reboot, execu-

tion resumes from line 1, re-executing the input and seeing the value six. The trace sets h and

increments c. Compared to JIT checkpoints, atomic regions may impose higher time overhead,

due to state management and re-execution. Some systems ask the programmer to define region

boundaries [Hester et al. 2017; Maeng et al. 2017; Ruppel and Lucia 2019], while others [Maeng

and Lucia 2018; Van Der Woude and Hicks 2016] automatically place boundaries to minimize

recovery cost. Manual placement requires more programmer effort, but avoids problems related to

peripherals and timely use of data, as a programmer is likely to know which code must execute

atomically (e.g., spin-loops awaiting peripheral results). The example in Figure 1 illustrates this

benefit of atomic region placement. Atomic execution makes its branching decision at line 2 using

fresh data always. In contrast, JIT execution may incur a power failure between lines 1 and 2,

causing an arbitrary delay and potentially rendering the input value t stale before its use on line 2.

Recent work [Maeng and Lucia 2019; Surbatovich et al. 2021] combines these two models, using

atomic regions only for correct and timely interactionwith peripherals and inputs, and low-overhead

JIT checkpoints otherwise. Curricle adopts this “JIT + atomics” intermittent execution model.

Maintaining Idempotent Execution: the What. A system should produce only intermittent

executions that are equivalent to some continuous execution [Surbatovich et al. 2020]. A JIT

scheme must save enough state to restore to the point of power failure, typically the registers

and stack. Atomic schemes must save enough state to restart the current atomic region and to

prevent re-execution from producing non-idempotent results, i.e., the registers and stack at the start
of the region, as well as a set of memory locations that includes those involved in WAR or RIO

access patterns. Figure 2 illustrates how a WAR dependence or repeated input operation causes

non-idempotence, showing an execution trace and values of non-volatile variables. All variables

start with value 0 (NVM0). The top trace almost completes the region before energy is exhausted,

setting both l and c to 1. The re-execution starts with these values persisted in non-volatile memory

(NVM0’). As the input value on re-execution is 6, the lower trace takes the if branch and sets h,
causing a RIO bug; both flags (h and l) are set, which is impossible in a continuous execution. On

incrementing c, the execution reads the prior value 1 and updates to 2, causing a WAR bug.

Undo, Redo, Up-front, or On-Demand: theHow. Prior work has explored a variety of recovery
implementations, including undo logging (revert changes at reboot) [Kortbeek et al. 2020b; Lucia and

Ransford 2015; Surbatovich et al. 2021], redo logging (commit changes at region completion) [Maeng

et al. 2017; Ruppel and Lucia 2019], and channels (dataflow edges) [Colin and Lucia 2016; Hester

et al. 2017]. Some identify all potential locations to restore ahead of time [Lucia and Ransford 2015],
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others at runtime [Kortbeek et al. 2020b]. These designs offer different overhead trade-offs and

optimizing logging overhead is orthogonal to identifying the set of data to recover for correctness.

2.2 Past Approaches Limit Programmers’ Choices, Incurring Unnecessary Overheads
Few systems take the same approach to recovery, and systems do not formally express their recovery

actions, leaving programmers with little assurance their program will execute as intended.

Lacking Principled Non-Idempotence. Some programs need non-idempotence to function

correctly. A system might count re-executions, or an application might track partial sensor readings,

even if they were interrupted by power failures. However, most prior systems assume that everything
must re-execute idempotently, providing no explicit mechanism for non-idempotent operations.

Prior efforts [Ma et al. 2017; Maioli and Mottola 2020] explore using data from partial executions

for optimization, but lack a way to express non-idempotence and lack a correctness definition for

programs that use data manipulated non-idempotently.

Monolithic Design Leads to Unnecessary Overheads. Today, intermittent system designers

must determine what should be recovered for correctness and then design actual recovery mecha-

nisms. Coupling these concerns creates an undesirable trade-off of correctness for performance.

The simplest approach taken by prior work, including state-of-the-art systems, recovers all written

data in an atomic region [Kortbeek et al. 2020b; Maeng and Lucia 2020; Ruppel and Lucia 2019].

This approach is simple and often correct (although incorrect in code that requires non-idempotent

operations) but has high overhead due to unnecessary logging of some written data. To reduce over-

heads, some systems use dataflow analysis [Lucia and Ransford 2015; Maeng et al. 2017; Surbatovich

et al. 2021, 2020] to identify and log only variables involved in WARs and RIOs. To be correct, these

analyses must be conservative w.r.t. to memory aliasing, which is challenging in C code that allows

arbitrary pointer manipulation. To avoid needlessly conservative data recovery, some systems

disallow or limit use of pointers, but do not actually check that the programmer is following the

these restrictions, allowing silent failures. Samoyed [Maeng and Lucia 2019] offloads reasoning

to the programmer, requiring annotations on WAR variables. However, the underlying system

assumes the programmer is correct and does not check the annotations against the program. If the

programmer under-specifies, the programwill not run correctly. If the programmer over-specifies, it

will cause overhead. Moreover, Samoyed does not consider RIOs, allowing idempotence violations.

3 AN OVERVIEW OF CURRICLE
Curricle overcomes the above-mentioned shortcomings of prior approaches. Curricle allows appli-

cation programmers to specify idempotence policies via types and provides clean abstractions to

relieve system designers from the burden of reasoning about idempotent accesses, as illustrated in

Figure 3. Along with checking that non-idempotent (Nid) variables do not interfere with idempotent

(Id) ones, Curricle provides a type inference algorithm that detects which Id variables have WAR

and RIO patterns, forming a recovery list. Curricle passes this list to the underlying recovery system,

which is connected by an abstract interface consisting of recovery APIs and requirements on these

APIs. Moreover, Curricle leverages Rust’s support for tracking unique ownership to ensure analysis

soundness, as Rust enforces alias restrictions that past intermittent systems assume, but do not

check, in C-based programs. We next provide a high-level intuition of Curricle’s type system design

and describe how Curricle benefits application programmers and intermittent system designers.

The Basics of Curricle Type System Components and Interactions. The Curricle type

system has two key objectives: it must check that any data the programmer typed as non-idempotent

does not flow to idempotent-typed data, and it must determine whether any idempotent-typed data

must be recovered by the system to indeed be accessed idempotently. To realize these objectives,
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Curricle relies on three key components: idempotence qualifiers, access mode qualifiers, and

taintedness qualifiers. First, the top-level idempotence qualifiers Id and Nid are checked as standard

information flow qualifiers, based on an integrity lattice [Biba 1977; Denning 1976]; non-idempotent

data is untrusted, idempotent data is trusted, and any operation that causes untrusted data to

influence trusted data, e.g., 𝑥 := 𝑦, where x is type Id and y is type Nid, will be rejected. Secondly,
each Id qualifier has an interior access mode qualifier that (a) describes why a variable is idempotent

and (b) limits the accesses allowed to the variable. For instance, if a variable has a read-only qualifier

Rd, this means that a variable is at most read, so cannot cause non-idempotence, and that a write to

this variable should fail to type check. If a variable is read thenwritten, as with the operation 𝑐 := 𝑐+1
in Figure 2, the only way for the variable to be idempotently accessed is for it to be checkpointed,

so it must have the access mode Ck to type check. As the access mode depends on potentially subtle

dataflow and input dependencies and is not part of the higher level idempotence specification,

Curricle provides a flow-sensitive inference algorithm to determine the access qualifier of each Id
variable, alongwith a checking algorithm that confirms an access mode solution accurately describes

the program. Finally, as the non-idempotent RIO access pattern involves input dependences, the

type system needs the taintedness qualifiers Tnt and Nt to track whether a variable is currently

dependent on an input operation (i.e., tainted). Defining the interactions between the checking,

inferring, and tracking algorithms forms some of the key challenges and novelty behind Curricle.

#[atomic]
#[nids(high)]

fn process(high:&t, 
_prev:&t, next:&t) {
1 *prev = *next
2 *next = sample()
3  if *next > 5:
4    *high = 1  
5 else skip 
} 

Curricle Type 

Inference/Checker

Meets 

Recovery Def

recover:
{𝑙𝑛𝑒𝑥𝑡} 

Intermittent-Rust Code

Static 
log

Dynamic 
log

Channels

…

Undo

Redo

𝑙𝑛𝑒𝑥𝑡: 𝐼𝑑 𝐶𝑘
𝑙𝑝𝑟𝑒𝑣: 𝐼𝑑(𝑊𝑡)

𝑙ℎ𝑖𝑔ℎ: 𝑁𝑖𝑑

Fig. 3. Curricle defines an abstraction between pro-
grams and the recovery system

Curricle Gives Programmers Correctness
and Control. Curricle enables programmers

to specify intended non-idempotence with its

information flow types and prevents unintended
non-idempotence from WAR and RIO bugs by

capturing a variable’s access pattern in the type

with access modes. Using Curricle thus bene-

fits programmers as Curricle checks that a pro-

grammer’s idempotence requirements are satis-

fied, while automatically determining the neces-

sary recovery list of each atomic region. To use

Curricle, the programmer specifies which func-

tions denote atomic regions and which vari-

ables should be non-idempotent (all others are typed as idempotent, the common case). Curricle next

infers the interior access mode of each Id variable, only inferring Ck if there is no other solution,

minimizing the recovery list. Curricle then reports this inferred recovery list to the programmer,

as well as any type errors caused by information flowing from Nid types to Id types. Allowing

the programmer to declare variables as non-idempotent while ensuring that non-idempotence

does not effect idempotent variables is a novel feature of Curricle and is a key advantage of the

language-level approach. Once a program compiles with no type errors, the program will run

correctly intermittently on any runtime that meets the properties of the defined system abstraction.

Targeting Curricle Simplifies Recovery System Design. Curricle separates reasoning about
a program’s idempotence requirements from the mechanics of restoration, reducing burden on

intermittent system designers and enabling them to write simpler, more performant systems.

Curricle’s correctness relies on the existence of a recovery system that meets a set of correctness

properties. We extract three core capabilities of a recovery system: Setup,Recover, Finalize. Setup
creates a recovery context that the system will use to restore state power failure, aided by Recover.
Finalize ensures that a previous recovery context can be safely discarded and a new one created.

These routines should ensure that for some given variable, the first access on re-execution matches
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Values 𝑣 ::= 𝑛 | true | false |&𝑥 |&𝑝.𝑛 Restore list ckPts ::= · | ckPts, 𝑥 | ckPts, 𝑥 .𝑛
Expressions 𝑒 ::= 𝑝 | 𝑣 | 𝑒1 ⊙ 𝑒2 | ⊘ 𝑒 Non-id list nIds ::= · | nIds, 𝑥 | nIds, 𝑥 .𝑛
Place expr. 𝑝 ::= 𝑥 | ∗ 𝑝 | 𝑝.𝑛 Programs prog ::= halt | seg; ; prog
Segments seg ::= 𝑐 | startatom (aID, ckPts, nIds, 𝜍) ;𝑐 ; endatom
Commands 𝑐 ::= skip | 𝑝 := 𝑒 | if 𝑒 then 𝑐1 else 𝑐2 | 𝑐1;𝑐2 | let 𝑥 = {𝑣0, ..., 𝑣𝑛 } in 𝑐 | let 𝑥 = 𝑓 (𝑣) in 𝑐

| let 𝑥 = 𝑒 in 𝑐 | let 𝑥 = IN() in 𝑐 | let 𝑓 : ft = cap(Δ) |arg | {𝑐′; ret := 𝑒 } in 𝑐
Fig. 4. Syntax

what the access would be on the initial execution, i.e., is idempotent. Which variables need to be

recovered to satisfy the idempotence requirements of the entire program execution is dependent on

the programmer’s desires combined with the access patterns of the program. Curricle gives this

recovery list, freeing the system designer from doing complex analyses and requiring them only to

provide mechanisms to back-up and restore variables.

4 LANGUAGE SYNTAX AND SEMANTICS
We present a core language for the JIT + Atomic region model of intermittent execution, with basic

Rust features, such as references, structs, and closures. The language semantics rely on a recovery

system, abstractly specified as a set of APIs and properties that the APIs must satisfy.

4.1 Syntax and Runtime Constructs
The syntax of our core calculus is shown in Figure 4. A value 𝑣 is an integer, boolean, or reference.

An expression 𝑒 can be a place expression, value, or an operation on further expressions. A place

expression 𝑝 names a memory location by variable, a dereference of 𝑝 , or a field access on 𝑝 . A

program prog consists of segments (seg) sequenced by the double semi-colon ; ;, which are either

atomic regions or commands. An atomic region is parametrized with an ID, a recovery list (ckPts),
a set of variables that can be non-idempotent (nIds), and an access mode solution 𝜍 (used for typing

and proofs). A command 𝑐 includes assignments, branches, function calls, mutable let bindings,
input operations, struct initialization, closure definitions, and further commands, sequenced by a

single semi-colon. A closure definition is written as 𝑓 = cap(Δ) |arg|{𝑐 ′; ret := 𝑒}, where Δ is the

set of captured variables, and arg is the function parameter. When Δ is empty, this reduces to a

function definition. To simplify our model, our syntax does not allow unbounded loops or recursion,

which do not add interesting features to the type system and are disallowed in atomic regions by

many intermittent systems due to their unpredictable energy cost. Furthermore, while unbounded

loops are common in general embedded systems programming (e.g., for blocking I/O), recursion

can be expensive to support on memory constrained devices due to the unpredictability of the stack

size. Our model also does not explicitly model Rust features like mutability and ownership tags, as

they are orthogonal to intermittent computation, which our type system targets. Such features are

supported by the implementation, however, as it targets real Rust programs, which also pass Rust’s

type checking. We further discuss supporting Rust code and limitations in Section 8.

Variables var ::= 𝑥 | 𝑥.𝑛 Mem. loc. loc ::= ℓ | ℓ .𝑛
Mem. value val ::= 𝑛 | true | false | loc NV-mem 𝑁 ::= · |𝑁, loc ↦→ val@(𝑞,wtflag)
Stack-mem 𝑉 ::= · |𝑉 , loc ↦→ val@𝑞 Prog. counter pc ::= ⟨Id, qIO⟩ | ⟨Nid, qIO⟩
PC stack pcS ::= pc ▷ · | pc ▷ pcS Recovery ctx 𝜅 ::= (𝑁,𝑆, 𝑐) | (𝑉 , 𝑆, 𝑐, ckPts) | · · ·
Mode counter mc ::= jit | atom Int. prog config. Σ𝑝 ::= (𝜅,mc, 𝑁 ,𝑀𝑁 , 𝑆, prog, seg)
Cont. config. 𝜎𝑐 ::= (𝑁,𝑆,𝑀𝑁 , seg) Int. cmnd config. Σ𝑐 ::= (𝜅,mc, 𝑁 ,𝑀𝑁 , 𝑆, seg)
Variable map 𝑀 ::= · |𝑀, var ↦→ loc |𝑀, 𝑓 ↦→ cap(Δ) |𝑎𝑟𝑔 |𝑐 ; ret := 𝑒,𝑀𝑓 ,𝑉𝑓 )
Exec. context 𝐸 ::= · | endIf ▷ 𝐸 | [ ];𝑐 ▷ 𝐸 | let 𝑥 = [ ] in 𝑐 ▷ 𝐸
Stack 𝑆 ::= (pcS, 𝑀,𝑉 , 𝐸) ▷𝑓 · | (pcS, 𝑀,𝑉 , 𝐸) ▷𝑓 𝑆

Observation 𝑜 ::= rb | in(𝑣@𝑞) | pwFail | atomB | jitB |mstate(𝑁,𝑉 )
Steps (Energy) Left 𝜀 ∈ N Logic Energy Inputs E ::= 𝜀 :: E
Observations 𝑂 ::= · | 𝑜 :: 𝑂 Sensor Inputs I ::= 𝑣 :: I

Fig. 5. Runtime Constructs

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 136. Publication date: June 2023.



136:8 Milijana Surbatovich, Naomi Spargo, Limin Jia, and Brandon Lucia

The runtime constructs used in defining our operational semantics are shown in Figure 5. Non-

volatile memory 𝑁 maps a location to a value, a qualifier, and a write flag wtflag, while volatile
memory 𝑉 maps a location to a value and a qualifier. We delay explaining these qualifiers until

the next section as they are only used for proofs. We assume that an n-element record is stored as

a contiguous set of locations ℓ .1 to ℓ .𝑛. A map 𝑀 maps variables to their memory locations and

function names to their definition. We write 𝑆 to denote the stack. A stack frame is added at a

function call and contains a pc stack pcS (for nested if statements), stack memory 𝑉 and the local

map𝑀 . To map variables to nonvolatile locations, we use a pre-initialized map𝑀𝑁 that is given

as a separate parameter in the intermittent configuration. This way, the stack pertains entirely

to volatile memory. The embedded devices we target statically allocate variables in non-volatile

memory, so we assume 𝑁 and 𝑀𝑁 are initialized with data and the correct variable-to-location

mappings. The last member of the stack tuple is a stack of execution contexts 𝐸 for keeping track

of execution order. let 𝑥 = [ ] in 𝑐 denotes the continuation of a function call. The result of the

function call will be bound to 𝑥 and the execution will continue from 𝑐 . [ ]; 𝑐 is the context for
evaluating sequences. The program always starts from the stack frame of themain function, where

the bottom of the stack is 𝑆0 = (⟨Id,Nt⟩, ·, ·, ·) with empty contexts.

An intermittent configuration Σ𝑝 contains the runtime state of the program. Σ𝑐 denotes a

command configuration (abbreviated as Σ), which contains a recovery context 𝜅, the current

execution mode mc (JIT or atomic), and the current command 𝑐 . The contents of the recovery

context depends on the underlying recovery system implementation—an instantiation is shown in

Section 7. A continuous configuration 𝜎𝑐 is (𝑁, 𝑆,𝑀𝑁 , seg) as recovery metadata is not needed. We

provide the program with a stream of sensor inputs: I, which gets a value removed and read on

an input command execution, and a logical energy input stream E. Each element of E, denoted 𝜀,
is a natural number indicating how many steps remain before power fails. Finally, an execution

generates observations, which include power failures pwFail, reboots rb, sensor inputs, transitions
between atomic and jit modes, and memory snapshots at the end of each program segment.

4.2 Operational Semantics

Continuous and intermittent execution semantic rules are of the form I | 𝜎 𝑂−→ I ′ | 𝜎 ′
and

E,I, 𝜀 | Σ 𝑂
=⇒ E ′,I ′

1
, 𝜀 ′

1
| Σ′

, respectively. Their semantic rules are almost the same, except that

intermittent executions use logical energy and have additional rules for recovery from power

failures. All the rules are standard and can be found in Section F of the supplementary material.

An intermittent execution relies on a recovery system 𝑅 to handle power failure. We formally

define a recovery system𝑅 as a pair of an API list and a property list, written𝑅 = (API, Prop). We say

𝑅 is correct if all APIs in API satisfies Prop, detailed in Section 4.3. We identify the following APIs for

Curricle: {lookUpN, updateN, Setup,Recover, Finalize}. When accessing the non-volatile memory,

the functions lookUpN((𝜅, 𝑁 ′), loc) and updateN((𝜅, 𝑁 ), loc ↦→ 𝑣) account for the memory state

potentially kept in the recovery context 𝜅 . When the rest of the functions are invoked depends on

the current execution mode. Executing in jit mode recovers to the point immediately before the

last power failure, whereas executing in atomic mode recovers to the start of the atomic region. We

explain the key rules shown in Figure 6, which use the mode counter mc to distinguish between jit

and atomic execution. On transitioning from jit to atomic mode, the system finalizes the previous

recovery point and sets up a new recovery point at the start of the atomic region (rule StartAtom).

Each command-level transition decreases, 𝜀, the number of energy steps remaining, by 1, with a

power failure represented by 𝜀 reaching 0. If power fails during atomic mode execution, the system

directly transitions to the reboot command (rule PowerFailAtom). When transitioning from atomic

mode to jit mode, the system finalizes the atomic region recovery point. While executing in jit
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mode, the system finalizes the previous point and sets up a new recovery point on low power (rule

PowerFailJit). Both rules clear the volatile memory, denoted 𝑆0, 𝑀0

𝑁
. On reboot in either mode (rule

Reboot), the system recovers to the stack, memory, and command returned by the Recover routine,
and “recharges” by popping the next segment of energy 𝜀 from the energy input stream E.

Finalize(𝑁,𝜅) = 𝑁 ′ Setup(atom, ckPts, nIds, 𝑁 ′, 𝑀𝑁 , 𝑆, prog, 𝑐) = (𝜅 ′, 𝑁 ′′)

E,I, 𝜀 | 𝜅, jit, 𝑁 ,𝑀𝑁 , 𝑆, prog, startatom (aID, ckPts, nIds, 𝜍); 𝑐; endatom
atomB
=⇒

E,I, 𝜀 − 1 | 𝜅 ′, atom, 𝑁 ′′, 𝑀𝑁 , 𝑆, prog, 𝑐; endatom

StartAtomic

Recover(mc, 𝜅, 𝑁 , 𝑆) = 𝜅 ′, 𝑁 ′, 𝑀 ′
𝑁 , 𝑆

′, prog, 𝑐

𝜀 :: E,I, 0 | 𝜅,mc, 𝑁 ,𝑀𝑁 , 𝑆, reboot, reboot
rb
=⇒ E,I, 𝜀 | 𝜅 ′,mc, 𝑁 ′, 𝑀 ′

𝑁 , 𝑆
′, prog, 𝑐

Reboot

E,I, 0 | 𝜅, atom, 𝑁 ,𝑀𝑁 , 𝑆, prog, 𝑐; endatom
pwFail
=⇒ E,I, 0 | 𝜅, atom, 𝑁 ,𝑀0

𝑁
, 𝑆0, reboot, reboot

PowerFailAtom

Finalize(𝑁,𝜅) = 𝑁 ′ Setup(jit, ∅, ∅, 𝑁 ′, 𝑀𝑁 , 𝑆, prog, 𝑐) = (𝜅 ′, 𝑁 ′′)

E,I, 0 | 𝜅, jit, 𝑁 ,𝑀𝑁 , 𝑆, prog, 𝑐
pwFail
=⇒ E,I, 0 | 𝜅 ′, jit, 𝑁 ′′, 𝑀0

𝑁
, 𝑆0, reboot, reboot

PowerFailJit

Fig. 6. Selected semantic rules, simplified to elide the typed memory

4.3 Requirements of the Recovery System
The correct execution of well-typed Curricle programs also relies on the correctness of the recovery

system 𝑅 = (API, Prop). We now explain the properties in groups of related operations.

We discuss what Prop includes below. The setup and recovery routines should guarantee that the

system recovers to the last setup point, restoring execution context and the values for checkpointed

variables. In other words, given the pair of functions Setup(mc, ckPts, nIds, 𝑁 ,𝑀𝑁 , 𝑆, prog, 𝑐) = 𝜅 ′, 𝑁 ′

and Recover(mc, 𝜅1, 𝑁1, 𝑆1) = 𝜅𝑟 , 𝑁𝑟 , 𝑀𝑛𝑟 , 𝑆𝑟 , prog𝑟 , 𝑐𝑟 the following properties must hold:

(SP1) ∀loc ∈ dom(𝜅 ′, 𝑁 ′), lookUpN((·, 𝑁 ), loc) = lookUpN((𝜅 ′, 𝑁 ′), loc)
(SP2) 𝑐 = 𝑐𝑟 , prog = prog𝑟 , 𝑆 = 𝑆𝑟 and𝑀𝑛 = 𝑀𝑛𝑟

(SP3) ∀loc ∈ ckPts, lookUpN((𝜅𝑟 , 𝑁𝑟 ), loc) = lookUpN((𝜅 ′, 𝑁 ′), loc)
(SP4) ∀loc ∈ dom(𝜅𝑟 , 𝑁𝑟 ) ∉ ckPts, if lookUpN((𝜅1, 𝑁1), loc) = 𝑣1 and lookUpN((𝜅𝑟 , 𝑁𝑟 ), loc) = 𝑣𝑟

where 𝑣1 ≠ 𝑣𝑟 then 𝑣𝑟 = lookUpN((𝜅 ′, 𝑁 ′), loc)
(SP5) ∀loc ∈ nIds, lookUpN((𝜅1, 𝑁1), loc) = lookUpN((𝜅𝑟 , 𝑁𝑟 ), loc)
Intuitively, these properties mean that (SP1) the setup routine cannot arbitrarily change values, and

after recovery (SP2) the command, stack, and memory mappings return to their values at the last

setup point, (SP3) looking up the value stored at locations in ckPts must be equivalent to looking

up the location from the initial state, (SP4) if the value for any other location has changed, the new

value must be equal to the value of the initial state, and (SP5) the value for location in nIds should
not be reset. Notice for (SP3) that the definition does not enforce where the value is stored, e.g., in a

log or in the main non-volatile memory, allowing for many implementations. Property (SP4) allows

the recovery system to change locations other than those in ckPts, necessary for more conservative

implementations, but constrains it from arbitrarily changing values. Property (SP5) means that

variables declared as non-idempotent should not be reverted by the system.

A finalize routine must ensure that after finalizing a recovery context, the system no longer

needs the past recovery context 𝜅 to look up values, and the functions lookUpN((𝜅, 𝑁 ), loc) and
updateN((𝜅, 𝑁 ), loc ↦→ 𝑣) must ensure that after an update, looking up returns the updated value:
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Base type 𝑏 ::= int | bool Qualified type tq ::= 𝑏@𝑞 | st@𝑞 | rt@𝑞

Type qual. 𝑞 ::= ⟨qId, qIO⟩ Struct type st ::= {𝑠0 ...𝑠𝑛 }
Taint qual. qIO ::= Tnt |Nt Simple type 𝑠 ::= 𝑏@𝑞 | rt@𝑞

Idemp. qual. qId ::= Id(qAcc) |Nid | Id | Id(𝛼) Reference type rt ::= &𝑏@𝑞 |&rt@𝑞 |&st
Access qual. qAcc ::= Wt | Rd | Ck |Wt ⊕ Rd |Wt𝑡 ⊕ Rd |Wt ⊕ Rd𝑡 |Wt𝑡 ⊕ Rd𝑡

Types 𝜏 ::= fn(tq)
pc
→ tq′ | tq
Fig. 7. Type Constructs

(FP1) Finalize(𝑁,𝜅) = 𝑁 ′
implies ∀loc ∈ dom(𝑁,𝜅), lookUpN((𝜅, 𝑁 ), loc) = lookUpN((·, 𝑁 ′), loc)

(RW1) lookUpN(updateN((𝜅, 𝑁 ), loc ↦→ 𝑣), loc) = 𝑣

5 THE CURRICLE TYPE SYSTEM
Curricle’s type system rules out programs that introduce non-idempotence when running intermit-

tently by augmenting data with idempotence and taint qualifiers, using type rules to determine

allowed information flow and the access mode of variables. First, we explain the types in more

detail. Then, we show how to type check a program with idempotence qualifiers and access modes

to solidify the intuition behind the types. Finally, we explain the type inference algorithm.

5.1 Typing Constructs and Running Example
Figure 7 shows the typing constructs, which include base types int and bool, and struct and reference
types. The right column shows the nesting of the types when creating structs and references. To

check idempotence and input taintedness, Curricle qualifies the type of expressions with a pair

⟨qId, qIO⟩. Note that the interior types of the struct carry their own qualifier pair.

The qIO qualifier denotes whether data is tainted by an input value: tainted data is typed Tnt and
un-tainted Nt. The qId qualifier denotes whether a variable can have different (non-idempotent)

values across re-executions (Nid), or must remain idempotent (Id). In addition, the idempotent

qualifier qId denotes why a variable is idempotently accessed with qualifier qAcc. A variable can be

idempotent because it must first be written to on any execution, thereby clearing any result from a

partial execution,Wt. Alternatively, a variable could be at most read, so the value never changes,

Rd. If a variable has a WAR or RIO access pattern, the only way for this variable to be idempotent

is for the original value to be checkpointed, Ck. Finally, if a variable is either first written or at

most read, but the decision is deterministic (i.e., not input dependent), the variable has access mode

Wt ⊕ Rd. This ⊕ type can have one or both sides tagged to indicate whether a leading read or write

access has occurred. Note that the type Wt𝑡 ⊕ Rd𝑡 is only possible statically, as the type system

must consider all possible first accesses from a branch. At runtime, only one path (and one initial

access) can be ever be taken. Id can also contain a type variable 𝛼 , used by Curricle’s inference

algorithm to determine access modes. Finally, the top level type 𝜏 consists of qualified types tq and

function types. The qId in a function type does not contain any access mode or type variable.

A Running Example. To explain type checking and inference, we will use the running example

in Figure 8. The example shows an atomic region processing a sensor read, using the syntax of the

implementation, which hews closer to Rust syntax. The programmer has marked the atomic region

but not declared any variables as Nid. The program copies *next into *prv and gathers new input

into *next. If the input value was greater than 5, it sets *high. Finally, if *prv was less than some

floor, *prv gets set to *fl, which otherwise gets cleared. We refer to the dereferenced locations of

next, prv, high and fl as 𝑛, 𝑝 , ℎ, and 𝑓 , henceforth. Because 𝑛 is involved in a WAR pattern and ℎ

is involved in a RIO, both locations must be checkpointed to maintain idempotence (access mode

Ck). On the other hand, 𝑝 is always first written, so it has modeWt, even though lines 6–7 read

then write to 𝑝 . Finally, 𝑓 is either always written or always read, based on a deterministic branch

value, so it has mode Wt ⊕ Rd.
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wt

#[atomic]
fn process(high:&t, 
prev:&t, next:&t, fl:&t) {
1 *prv = *next
2  let in = IN()
3 *next = in
4  if *next > 5:
5    *high = 1 else skip
6 if *prv < FLOOR:
7   *prv = *fl else *fl = 0}

Atomic Region

ck

Φ0: ⋅

p nh

wt

𝛓 = {𝛂𝐧: 𝐜𝐤, 𝛂𝐩:𝐰𝐭,

𝛂𝐡: 𝐜𝐤, 𝛂𝐟: 𝐰𝐭 𝐫𝐝}

𝚪𝟎

Φ1r: Φ0, αn = rd ∨ αn = ck
Φ1l: Φ1r, αp = wt ∨ αp = ck

Φ3: Φ1l, αn = wt ∨ αn = ck

Φ5t: Φ3, αh = wt ∨ αh = ck

Φ5f: Φ3

Φ5: Φ3, (αh = wt ∨ αh = ck)
∧ (αh= rd ∨ αh = ck)

Φ7f: Φ5, αf = wt ∨ αf = ck

Φ7t: Φ5, αf= rd ∨ αf = ck

Φ7: Φ5, (αf = wt ∨ αf = ck)
⊕ (αf= rd ∨ αf = ck)

Φfin: Φ5, (αf = wt ∨ αf = ck)
∨ (αf= rd ∨ αf = ck)

f

ck ⊕wt rd

ck wt𝚪𝟑 ck ⊕wt

ck wt𝚪𝟓 ck ⊕wt

rd

rd

ck wt𝚪𝟖 ck ⊕rd
⊕

Wts
∅
p

p,n,h

p,n

p,n
p,n, f
p,n

t t

qIO = Tnt

Fig. 8. Code with type contexts and constraints

Information Flow Lattices. Curricle uses two
information flow lattices and defines a partial

order for access modes. The first lattice is for

idempotence qualifiers and is used to prevent

non-idempotent values from influencing idem-

potent ones, with the partial order defined as

Id(_) ⊏ Nid. The second lattice is for qIO with

Nt ⊏ Tnt, to track input tainting through the

program execution. The partial order qAcc
1
≺𝑎

qAcc
2
indicates that the type system poses less

access restrictions on a location qualified by

qAcc
1
than qAcc

2
. For example, if an access

mode is Ck, any access, in any order, is allowed,

but if an access mode is Rd, the location can

only be read and not written. It is defined as

Ck ≺𝑎 Wt ∼𝑎 (Wt𝑡 ⊕ Rd) ≺𝑎 (Wt ⊕ Rd) and
Ck ≺𝑎 Rd ∼𝑎 (Wt ⊕ Rd𝑡 ) ∼𝑎 (Wt𝑡 ⊕ Rd𝑡 ) ≺𝑎

(Wt ⊕ Rd). The type Wt ⊕ Rd is the top element because it cannot have had any accesses made

to it; when an initial write or read access occurs, the respective mode gets tagged and the type

changes. A tagged Rd makes the type equivalent to Rd, regardless of whether the write tag is set,
and an exclusively tagged Wt is equivalent to Wt.

5.2 Type Checking Access Modes
Type checking confirms that an access mode assignment describes the program. We first describe

the type checking judgments and then step through the checking algorithm for the example in

Figure 8, using the selected rules in Figure 9.

Typing Contexts and Judgments. The memory typing context Γ maps abstract locations l and
function names 𝑓 to their respective types. The points-to map Π maps place expressions (e.g.,

variable names) to abstract locations, as well as function names to their declaration. A variable’s

type can be looked up as Γ(Π(𝑥)). Assuming a linear type system like Rust’s ownership typing

beneath Curricle, a place-to-location mapping can be computed syntactically and is almost always

a singleton set.
1
As an example, if a variable is borrowed, 𝑥 := &𝑦, the points-to map updates the

entry of ∗𝑥 to be Π(𝑦). The points-to map can change if, e.g., the value of a reference type changes.

Additionally, the checking rules calculate a must write set of locations, Wts.

Type Context Γ ::= · | Γ, l : 𝜏 | Γ, 𝑓 : 𝜏 Writes Wts ::= · |Wts, l
Points-to Map Π ::= · | Π, 𝑝 : l | Π, 𝑓 : cap(Δ) |arg|{𝑐; ret := 𝑒}

Expression typing judgments are of the form Γ,Π ⊢𝑒 𝑒 : 𝜏 ⇒ Γ′, meaning given a typing context and

a points-to map, evaluating expression 𝑒 yields a value of type 𝜏 and an updated typing context Γ′.
Command typing judgments are of the form Γ,Π,Wts, pc ⊢ 𝑐 ⇒ Γ′,Π′,Wts′. The program counter

pc indicates the qualifiers of the outer branching condition. Executing 𝑐 changes the points-to map

to Π′
and the must-write set toWts′. The lower left of Figure 8 shows the typing contexts for the

dereferenced locations, with Γ𝑛 denoting the context after line n, showing only the access mode for

space. A pink tag in the corner means that the location’s taintedness qualifier is set to Tnt.
Checking Reads and Writes. Rules LocUnwritten and LocWritten check read accesses. The

notation qId ↑qAcc retrieves the access mode of a type, if one exists. Reading a location l of type
1
The rules in Appendix Sections C and D handle the multi-element case; since it complicates the typing rule presentation

and is rare in practice (it does not occur in our benchmarks), we defer the discussion.
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Rd will type check as long as l is not written (l ∉ Wts). A read to l of type Wt, however, only type

checks if l has already been written, preventing a variable with a WAR access pattern from being

typed asWt. Reading l of type Ck type checks regardless of whether l is inWts. Rule Assgn checks

write accesses. The rule checks that the location’s type is one that allows writes (qAcc ⪯𝑎 Wt) and
adds the location to Wts. No rule allows writing to locations of type ∼𝑎 Rd, preventing a variable
with a WAR access pattern from being typed as Rd. Consider line 1 of the example, which reads 𝑛

and writes to 𝑝 . Since 𝑛 has type Ck and 𝑛 ∉ Wts, the right hand side checks with rule Unwritten.

The type of 𝑝 isWt, so rule Assgn checks the write and adds 𝑝 toWts. Any reads to 𝑝 , as on line 6,

will now type check with rule LocWritten. Continuing, line 2 gets an input, storing it into a stack

variable. Rule Let-In sets the qualifier of in to ⟨Id, Tnt⟩ since its value is always reinitialized, but is
input dependent. Checking line 3, rule Assgn type checks the write to 𝑛 as Ck ⪯𝑎 Wt, and updates

𝑛’s taint qualifier to Tnt, as the expression in is tainted.

Γ(l) = ⟨qId, qIO⟩ l ∉ Wts qId ↑qAcc⪯𝑎 Rd

Γ,Π,Wts ⊢atom𝑒 l : 𝑡@⟨qId ↓, qIO⟩ ⇒ Γ
LocUnwritten

Γ(l) = ⟨qId, qIO⟩ l ∈ Wts qId ↑qAcc⪯𝑎 Wt

Γ,Π,Wts ⊢atom𝑒 l : 𝑡@⟨qId ↓, qIO⟩ ⇒ Γ
LocWritten

Γ,Π,Wts ⊢atom𝑒 𝑒 : bool@⟨qId𝑒 , qIO𝑒 ⟩ ⟨qIdpc, Tnt⟩ = ⟨qId𝑒 , qIO𝑒 ⟩ ⊔ pc
Γ,Π,Wts, ⟨qIdpc, Tnt⟩ ⊢atom𝑐 𝑐1 ⇒ Γ1,Π1,Wts1 Γ,Π,Wts, ⟨qIdpc, Tnt⟩ ⊢atom𝑐 𝑐2 ⇒ Γ2,Π2,Wts2
Γ3 = Γ1 ⊔𝑇 Γ2 WtsEMW = (Wts1 ∪Wts2) \ (Wts1 ∩Wts2) ∀l ∈ WtsEMW, Γ3 (l) ↑qAcc⪯𝑎 Ck

Γ,Π,Wts, pc ⊢atom𝑐 if 𝑒 then 𝑐1 else 𝑐2 ⇒ Γ1 ⊔𝑇 Γ2,Π1 ⊎ Π2,Wts1 ∩Wts2
IfTnt

Π(𝑝) = l𝑝 Γ,Π,Wts ⊢atom𝑒 𝑒 : 𝑡@𝑞𝑒 ⇒ Γ′

Γ′,Π,Wts ⊢atomelft 𝑝 : @𝑞𝑙 ⇒ Γ′
𝑙

⟨qId𝑒 , qIO𝑒 ⟩ = 𝑞𝑒 ⊔ ⟨qIdpc, qIOpc⟩ ⊔ 𝑞𝑙

Γ′
𝑙
(l𝑝 ) = 𝑡@⟨qId𝑝 , qIO𝑝 ⟩ qId𝑒 ⊑ qId𝑝 ↓ qId𝑝 ↑qAcc⪯𝑎 Wt UpdatePoint(Π, 𝑝, 𝑒 : 𝑡) = Π′

Γ,Π,Wts, ⟨qIdpc, qIdpc⟩ ⊢atom𝑐 𝑝 := 𝑒 ⇒ Γ′
𝑙
[Π′(𝑝) : ⟨qId𝑝 , qIO𝑒 ⟩],Π′, (Wts,Π′(𝑝))

Assgn

fresh(l𝑥 ) Γ [l𝑥 : Int@⟨Id, Tnt⟩],Π[𝑥 : l𝑥 ], (Wts, l𝑥 ), pc ⊢atom𝑐 𝑐 ⇒ Γ𝑐 ,Π𝑐 ,Wts𝑐

Γ,Π,Wts, pc ⊢atom𝑐 let 𝑥 = IN() in 𝑐 ⇒ Γ𝑐 ,Π𝑐\𝑥,Wts𝑐\l𝑥
Let-In

Fig. 9. Selected typing rules, showing checks for reads, writes, branches, and input operations

Branches, Selects, and Joins. Type checkingmust ensure that if a variable is non-deterministically

written to based on input, such a variable must be checkpointed. Rule IfTnt checks branches where

the conditional expression is tainted. It sets the pc for the check of each branch arm to the least

upper bound of the current pc and the taint of the branching expression and confirms that any

variable written on only one of the paths (i.e., the set difference between the union of writes sets

and their intersection) has access mode Ck. On lines 4–5, 𝑛 is tainted, so rule IfTnt applies. As

the current pc is tainted, checking the write to ℎ updates its taint qualifier to Tnt and adds ℎ to the

write set. The else branch does not access ℎ, keeping the write set {𝑝, 𝑛}. Since ℎ is not in both

write sets, it must have access mode Ck. Of course, if the programmer decides that ℎ should be set

for any seen input, not just the one of the final execution, they can give ℎ the type Nid.
Lines 6–7 contain another branch, this time on a read of 𝑝 , which is not tainted. Because it does

not depend on non-deterministic sensor values, at run time 𝑝 will always evaluate deterministically

on any partial execution. Thus, even though 𝑓 is only written on one path, and read on the
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other, it need not be checkpointed, a situation that cannot be described with the basicWt and Rd
access modes. To avoid throwing out programs unnecessarily, we create the special Wt ⊕ Rd type;

handling this type is a key challenge of designing the type checking algorithm. Checking a write of

an untaggedWt ⊕ Rd updates the type toWt𝑡 ⊕ Rd, allowing 𝑓 to be treated as typeWt within the

else branch (AssgnSelect, not shown). Checking the if branch sets the read tag, treating the type

as Rd (LocSelect, not shown). Crucially, joining these now differing type context accumulates any
tags; after the branch 𝑓 has typeWt𝑡 ⊕ Rd𝑡 . This type is ∼𝑎 Rd, capturing that the remainder of

the atomic region should at most read to 𝑓 . If the program had a following write to 𝑓 , then taking

the if path would result in a WAR access and would not type check.

Finally, the top level rule for an atomic region checks that all variables with typeWt, in this case

𝑝 , are in Wts, confirming that they must be written.

5.3 Inferring Access Modes
Curricle’s inference algorithm infers access modes for programmers, generating a per-atomic-region

access mode solution 𝜍 that will type check if used to initialize the typing context of a region. We

describe the inference algorithm at a high level and provide the intuition for why inferred solutions

are sound w.r.t. the type checking judgments. The inference judgments require the additional

contexts listed below. The type variable context 𝐴 maps an abstract location l to a type variable 𝛼 ,

where Γ(l) = Id(𝛼). The constraint context Φ is a list of constraints 𝜑 , interpreted as being joined

by ∧, which can be an equality between a type variable and an access mode, a ∧ of two constraints,

a ∨, or a special “lazy” operator and constraint ⊕𝛼 and ⌊𝛼⌋, which we explain shortly. The inference

judgments are then of the form Φ, 𝐴, Γ,Π, ⊢inf𝑒 𝑒 : 𝑡@𝑞 ⇒ Φ′
and Φ, 𝐴, Γ,Π, pc ⊢inf𝑐 𝑐𝑚𝑑 ⇒ Φ′, Γ′,Π′

where Φ′
records any of the constraints imposed by expression 𝑒 or command 𝑐 . The key operations

that constrain the access mode of a variable are reads, writes, and branch joins. We describe the

constraints generated by each operation, showing the Φ𝑛 on the right of Figure 8.

TVar Context 𝐴 ::= · |𝐴, l : 𝛼 Constraint Context Φ ::= · | Φ, 𝜑
Constraints 𝜑 ::= 𝛼 = qAcc | 𝜑1 ∨ 𝜑2 | 𝜑1 ∧ 𝜑2 | 𝜑1 ⊕𝛼 𝜑2 | ⌊𝛼⌋

Reads and Writes. On the read of 𝑛 on line 1, 𝛼𝑛 is not in the domain of Φ0, so the judgments

determine it is the first access and constrain 𝛼𝑛 to be Ck or Rd (Φ1𝑟 ). On the write to 𝑝 , 𝛼𝑝 is

constrained to be Ck or Wt (Φ1𝑙 ). On line 3, 𝑛 is written to, similarly restricting 𝛼𝑛 to be Ck or Wt
(Φ3). Note now that the only way to solve the constraints on 𝛼𝑛 , joined by ∧, is 𝛼𝑛 = Ck. In this

way, any variable with a WAR can only have access mode Ck. Next, when 𝑛 is read on line 4, 𝛼𝑛
is already in the domain of Φ3; this read cannot be the first access, and the judgments impose no

further constraints. Looking to the read of 𝑝 on line 6, the fact that a read imposes no constraints

when 𝛼𝑝 is already in the constraint set matches the intuition that a Wt-typed variable can freely

be read once written; 𝛼𝑝 can still solve toWt after the read as 𝑝 need not be checkpointed, unlike 𝑛.

Branches and Joins. Just as checking uses a different rule depending on the taintedness of the

branch expression, inference uses two different joins, ∧Tnt
and ∧Nt

. For example, the write to ℎ on

line 5 constrains 𝛼ℎ to be Ck or Wt (Φ5𝑡 ), but the else branch imposes no constraints (Φ5𝑡 ). As the

expression on line 4 is tainted, Φ5𝑡 and Φ5𝑓 are joined with ∧𝑇𝑛𝑡
. This join differs from a standard

∧ only in that, if 𝛼ℎ is not in the domain of one operand (Φ5𝑓 ), the join adds in the constraint that

𝛼ℎ is Ck or Rd to fill in the empty side. The effect of this join is that if only one operand contains a

write constraint (𝛼ℎ = Ck orWt), the only solution for the resulting set (Φ5) is Ck. However, this
join is too strict for the non-tainted branch on lines 6–7. While taking the if branch constrains

𝛼 𝑓 to be Ck or Rd (Φ7𝑡 ), and taking the else constrains it to be Ck or Wt (Φ7𝑓 ), 𝑓 need not be

checkpointed. Thus, we introduce a lazy operator, ⊕𝛼 , which allows solving to theWt ⊕ Rd type

in certain situations. The intuition of ⊕𝛼 is that if the atomic region maintains the invariant that
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a variable must be first written or is at most read, then the constraints can be joined with ∨, not
∧. To handle cases where a non-tainted branch does not access the variable at all on one side, we

introduce a lazy constraint, ⌊𝛼⌋. The intuition of ⌊𝛼⌋ is that it forms a “hole” that should be filled

on the next access to 𝛼 , which would be the first access on some path. If that access is a write, ⊕𝛼

is replaced with the standard ∧, but if the inference reaches the end of the atomic region with no

further writes, then ⊕𝛼 is replaced with ∨ (Φfin). To solve the constraints, Curricle actually does not

return the most general solution according to the access mode lattice, as such as solution would

return Ck, the bottom element, wherever possible, e.g., for 𝛼𝑝 = Ck ∨ 𝛼𝑝 = Wt. Instead, Curricle
returns the highest solution possible, to minimize the recovery list. Notice that for 𝛼 𝑓 , which can

be Ck or Wt or Rd, due to the final operator being ∨, this solves to the top-most element of the

latticeWt ⊕ Rd, successfully recording that 𝑓 is exclusively first written or at most read.

Soundness. We implement the type inference algorithm but prove non-interference over the

checking algorithm. To connect the two, we prove a soundness theorem for the inference algorithm.

The theorem states that if the inference algorithm generates an access mode assignment 𝜍 , then that

assignment will type check. The example gives the intuition for why this is true; at each step where

a typing rule would reject a program, e.g., having type Rd on a write access, the generated constraint
set already cannot solve to that access mode. The proof relies on defining a correspondence between

a partially generated constraint set and the concrete typing context (Appendix Section E).

6 CORRECTNESS AS NON-INTERFERENCE
To state our correctness theorem, we first formalize system inputs, outputs, and their equivalences,

using these notions to define noninterference and subsequently correctness of intermittent systems.

We then state and prove that well-typed Curricle programs run correctly on intermittent systems.

Detailed definitions and auxiliary lemmas are in Sections G–K of the supplementary material.

6.1 Definitions for Correctness
To formally state that nondeterministic power failures do not interfere with the program execution

(noninterference), we first define notions of input, output, and memory equivalence.

We define two helper functions: lastInputs(𝑂) to extract the sensor inputs for the completed

execution of each atomic region and all sensor inputs of a JIT segment; and mstatesOf (𝑂) to
extract all mstate(𝑁,𝑉 ) observations out of the trace. We say two input streams are equivalent

w.r.t. idempotence, written 𝐼1 ≈in 𝐼2, if all sensor inputs taken under a low (Id) context are the
same. This allows traces 𝑇1 and 𝑇2 to differ on sensor readings taken during partial executions of

atomic regions (which are thrown out by lastInputs) and during the execution of branches that

depend on non-idempotent conditional expressions. We define two output sequences as equivalent

w.r.t. idempotence, written 𝑂1 ≈out 𝑂2, if the memory state observations at the completion of each

atomic region and JIT segment agree on idempotent locations (those have type qualifier Id).
We define our first correctness definition, one of noninterference, below; it states that, starting

from a program’s initial state, any two intermittent executions of the program produce equivalent

memory states, as long as their idempotent sensor inputs are equivalent. Figure 10 illustrates the

definition for an atomic region. The left side shows multiple partial executions of two traces and

the right shows the last, completed execution. As the inputs are equivalent, for noninterference to

hold, the memory state observation at each transition of this final execution must be equivalent.

Definition 1 (Noninterference). Nondeterministic power failures do not interfere with the
intermittent execution of a program prog from Σ𝑝 iff given Σ𝑝 s.t. it is the initial state of prog and two

execution traces 𝑇1 and 𝑇2, 𝑇1 = E1,I1, 𝜀1 | Σ𝑝
𝑂1

=⇒∗ 𝑇2 = E2,I2, 𝜀2 | Σ𝑝
𝑂2

=⇒∗ s.t. lastInputs(𝑂1) ≈in

lastInputs(𝑂2), it is the case that mstatesof (𝑂1) ≈out mstatesof (𝑂2).
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6.2 Noninterference Proof
We prove the following main correctness theorem, which states that, starting from a well typed state,

then for all intermittent executions of this program, all intermittent executions with power-failure

equivalent inputs will produce equivalent outputs.

Theorem 2 (Noninterference). Given any initial configuration Σ𝑝 for prog, s.t. ⊢ Σ𝑝 : ok,
nondeterministic power failures do not interfere with the intermittent execution of prog from Σ𝑝 .

We prove this theorem by inducting over the JIT and atomic regions in the traces and then over

the power failures in each atomic region execution. Much of the complexity comes from proving

partial executions of atomic regions eventually yield equivalent results (illustrated in Figure 10).

To show this, we define a low-equivalence (≈) relation between memory states and configurations

that holds at every execution step during the completed execution. The high level idea of the

equivalence definition for memory states is that the value of Nid locations can differ, while the

value of Id locations should match. However, a partial execution updates persistent memory, and

only reverts checkpointed locations, introducing differences in the Id locations of the two traces.

Thus, the memory state relation uses the access qualifiers, which indicate whether a location could

be written to on prior partial executions, and write flags, which indicate whether the location

is written to in this execution, to constrain where these differences can occur. If a location has

a read-only type, e.g., Id(Rd), this value can never differ. If a location has a first write type, e.g.,

Id(Wt), the value can differ until the first write occurs, i.e., the write flag is set, as this write must

overwrite the difference. Assuming a well-typed program, such a write must always occur. As

non-idempotence can also cause commands executed to differ if a branch decision is made on

non-idempotent values, our equivalence definition for configurations states that only low context

stack content and commands must match.

To reason about partial executions, we define a relation between an intermittent configuration

and the entry point configuration, Σ1 ≺ Σ1

1
, showing that as a trace advances it does not change the

value of Id(Rd) or never accessed locations. We then show that after a reboot, the resulting state Σ1r
is low equivalent to the entry state; checkpointed variables must revert to their values at the entry

point by the definition of a recovery system, and other written locations switch to an unwritten flag

and are allowed to differ. In this way, if two traces start from equivalent states, no matter the power

failures each trace experiences, any partial execution always “collapses” back to an equivalent state.

Then, we show that for the last, complete execution, at each step, the configurations maintain ≈
equivalence. Since the programs are well-typed, there can never be a command that attempts to

read the differing locations written on a past execution. As all low reads must be equivalent, any

low writes will get the same value, overwriting values from past executions. If a trace switches to a

high context, any written variables must be high, or the program would not have type checked.

After returning from the high context, the traces continue in lock-step. Finally, we show that all

potentially different Id(Wt) or Id(Wt𝑡 ⊕ Rd)-typed locations must have been written by the end of

the atomic region. Maintaining that only Nid typed locations are different by region end allows us

to switch between execution modes in a top level induction between program segments.

6.3 Correctness w.r.t. Continuously Powered Execution
To connect our noninterference result to continuous executions, we also prove the following corol-

lary, stating that an intermittent execution with zero power failure events is equivalent to a contin-

uous execution. We write 𝜎 = Σ−
if Σ = (𝜅,mc, 𝑁 ,𝑀𝑁 , 𝑆, prog, seg) and 𝜎 = (𝑁𝑐 , 𝑀𝑁 , 𝑆, prog−, seg),

𝑁𝑐 = Finalize(𝜅, 𝑁 ), and prog− is prog with atomic region boundaries stripped.
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Fig. 10. Overview of the proof structure for atomic regions

Corollary 3 (Intermittent-Erase-Cont). Given Σ𝑝 and 𝜎𝑝 = Σ𝑝−, 𝑂1 is power failure free,

𝑇1 = E,I,∞ | Σ𝑝
𝑂1

=⇒ E,I ′,∞ | Σ𝑝 ′, 𝜎𝑝
𝑂1

−

=⇒ 𝜎𝑝 ′, implies 𝑂1 = 𝑂2 and 𝜎 ′𝑝 = Σ𝑝 ′−

The key differences in the two semantics are that the intermittent execution will start and end

atomic regions, and it will use the recovery context when reading and writing memory. Thus, the

proof relies on the recovery system properties (SP1, RW1, FP1).

7 RECOVERY SYSTEM AND UNDERLYING HARDWARE
To take advantage of the correctness guarantees provided by Curricle, the recovery system im-

plementation, which is in charge of providing an idempotent view of any location in the given

recovery list by the time the location is read, needs only to satisfy the properties in Section 4.3.

Similarly, Curricle makes few assumptions about the underlying hardware, hiding architectural

details beneath the system abstraction layer. We show an example undo-logging instantiation and

briefly discuss how hardware impacts Curricle.

7.1 An Undo Logging Instantiation
Below are the definitions of the recovery system routines of an up-front undo logging system.

To set up an atomic mode recovery point, the current stack, map 𝑀𝑛 , program, and value of the

non-volatile memory for the locations in ckPts are saved. In JIT mode, the stack, map, and program

are saved. Neither routine changes the value of any variables (SP1).

𝜅 ′ = (𝑁 |ckPts, 𝑆, 𝑀𝑛, prog, 𝑐)
Setup(atom, ckPts, nIds, 𝑁 ,𝑀𝑛, 𝑆, prog, 𝑐) = (𝜅 ′, 𝑁 )

𝜅 ′ = (∅, 𝑆, 𝑀𝑛, prog, 𝑐)
Setup(jit, ∅, ∅, 𝑁 ,𝑀𝑛, 𝑆, prog, 𝑐) = (𝜅 ′, 𝑁 )

𝜅 = (𝑁𝑐 , 𝑆𝑐 , 𝑀𝑛𝑐 , prog𝑐 , 𝑐𝑐 )
Recover(mc, 𝜅, 𝑁 , 𝑆) = 𝜅, 𝑁 ◁ 𝑁𝑐 , 𝑀𝑛𝑐 , 𝑆𝑐 , prog𝑐 , 𝑐𝑐 Finalize(𝑁,𝜅) = 𝑁

On reboot, regardless of mode, the system recovers by updating the stack, map and program to the

saved versions, and applies any saved values back into the memory. This ensures that locations

in the recovery list and all the execution state return to their values at the setup point (SP2, 3),

while other state remains the same (SP4). As ckPts and nIds must be disjoint, SP5 (nIds should
not be modified) is also satisfied. The lookup and update functions (omitted) directly access the

nonvolatile memory
2
, even for locations in ckPts, satisfying RW1 and making finalizing a no-op,

as any updates already reside in memory. Thus the old recovery context can be discarded (FP1).

7.2 How Does Hardware Affect Curricle?
Curricle’s recovery system abstraction hides memory model and micro-architectural details from

the type system, making Curricle applicable even as the underlying hardware changes.

2
The update function for an on-demand undo-logging system also saves initial values to the log.
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MemoryModels & Re-ordering. Most current intermittent systems are sequential, with a simple

memory model. Furthermore, caches are write-through, and compilers do not re-order instructions

past region boundaries. As such, instructions can be assumed to execute and persist in program

order, within the region they appear in the source. However, more complex hardware, such as a

write-back cache or volatile scratchpad, can cause instructions to persist out of order, requiring

reasoning about the persistent memorymodel [Pelley et al. 2014, 2015; Raad and Vafeiadis 2018; Raad

et al. 2019]. We designed Curricle so that persistence reasoning applies to the system abstraction

layer (e.g., proving that Finalize persists values in a cache) and not the type system, which is

agnostic to these lower level details. Proving that this abstraction layer is sufficient is future work.

Volatility Assumptions. The semantics of the core calculus treat the stack 𝑆 as volatile and all

other memory 𝑁 as non-volatile. Some intermittent system designs place most or all of the stack

in the non-volatile memory [Kortbeek et al. 2020b; Maeng and Lucia 2018], and some emerging

processors are completely non-volatile, including the register file [Ma et al. 2018]. Curricle is

still useful on such systems and devices. The execution model with pure non-volatile memory

is similar to the JIT execution model described in Section 2.1, as the system directly resumes

execution from the point of power failure, which remains arbitrary. Just as with JIT execution,

atomic regions remain a necessary language construct to satisfy timing constraints, which may

require input operations to be re-executed freshly after a power failure. Any re-execution introduces

the possibility of non-idempotent updates, the key concern of Curricle.

8 CURRICLE IMPLEMENTATION
We implemented Curricle using Rust’s procedural macro feature, which operates on a program’s

abstract syntax tree (AST). The programmer annotates necessary types, leaving the rest to be

inferred. Curricle’s analysis visits AST nodes, applying syntax-node-specific type inference and

checking rules to each operation. After Curricle’s checking pass, Rust’s type checker runs, validating

the type linearity upon which Curricle relies, despite Curricle not explicitly modelling ownership.

Using the Curricle Implementation. To use Curricle, a programmer annotates their Rust code

with attributes. For example, the Rust annotation #[nids(high)] marks high as non-idempotent

in Figure 3. To reduce annotation burden, Curricle requires specifying which variables are Nid only,

assuming the rest are Id. The programmer additionally marks which functions execute atomically

and annotates the signature of any function called from such an atomic function with taint types. In

our prototype, the programmer provides these taint types to match our formal model. An alternative

would be to use existing intermittent taint-tracking analyses [Surbatovich et al. 2020]; nothing

fundamental prevents building these analyses into our prototype, but we opted not to because

doing so would require porting from LLVM to Rust procedural macros. While our syntax for

functions/closures explicitly lists captured variables, the programmer need not provide the list.
Similarly, functions need not be declared with a let binding.

Curricle infers the access modes of all Id variables and checks that there are no information

flow violations. The analysis reports both information flow type errors and variables that have

access mode Ck, which must be added to the recovery list. The goal of this report is to help the

programmer understand their types and identify variables that should be Nid, as well as to guide

refactoring to avoid non-idempotent access patterns and reduce the recovery list.

Connecting Curricle to the Underlying Recovery System. Curricle exposes the recovery list

that it produces through an interface to recovery system implementations. For each atomic region,

Curricle reports variables in the recovery list. For a system that, e.g., saves variables at region

start [Lucia and Ransford 2015; Surbatovich et al. 2021], this list suffices, because the variable name

corresponds to a non-volatile memory location. For systems that log data on demand at a write
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or read [Kortbeek et al. 2020b; Maeng et al. 2017], Curricle must refer to a particular non-volatile

memory location, potentially through an alias. Curricle passes this points-to information to the

recovery system by instrumenting each read and write of a recovery list variable with calls to

tagRead and tagWrite interface functions, respectively. A recovery system designer can implement

these functions to log a location using an on-demand logging strategy.

Limitations &Differences from the FormalModel. Curricle’s implementation closely matches

its formal model, but there are a few differences. The prototype requires atomic regions to be

functions. In some code, Rust allows type elision and not all type information is available to our

procedural macros. Writing atomic regions as functions ensures sufficient information for our type

analysis without demanding extra work for the programmer, because function arguments require

explicit types. Our implementation checks real Rust code, which includes more syntactic constructs

than our core calculus. Often these constructs map to a command in our calculus. For example, a

match expression can be treated as an if with additional branches. Similarly, an immutable let
binding can be treated as our generic let; every program must pass the Rust type checker after

passing Curricle’s checks, confirming that an immutable let was never written to, even though

Curricle does not explicitly model mutability. One excluded feature from the model that must be

handled specially by the Curricle implementation is arrays. Precise static array reference analysis

is difficult and often impossible, so our type inference treats arrays conservatively. After a leading

write to an array, a read of some array element could still be a first access, and a subsequent write

should require the access mode of the array to be Ck. To capture this conservatism, the inference

constraint must record that after, e.g., a write, any element still has the potential to be not yet

accessed, leveraging the “lazy” constraint discussed in Section 5.3.

Curricle does not support unsafe Rust, which allows syntactically untrackable pointer manipula-

tions, or interior mutability (e.g., RefCell). Determining what properties unsafe Rust blocks must

satisfy for sound Curricle analysis, as well as how to specify and enforce them, is a rich future

research direction that could integrate with Rust formal models [Jung et al. 2019, 2017].

9 EVALUATION
Our evaluation shows that Curricle benefits both intermittent system designers and application

programmers; Curricle enables the recovery system to reduce dynamic logging time and memory

overheads compared to approaches that recover all written data, without the designer writing

complex, ad hoc analyses, compared to approaches that use dataflow analysis passes. Application

programmers can express idempotence requirements with a type-level assurance of correctness.

Table 1. Benchmark characteristics and effort to use Curricle
Benchmark Characteristics Using Curricle

# Fn/Clsrs called
Origin App LoC # Atomic Reg. in Atomics # Anno. # Explicit typed Var. LoC Overhead # Ck

Ocelot

Activity 518 2 8 10 29 1.9% 2

CEM 320 1 1 2 3 0.6% 1

Greenhouse 234 1 4 5 10 2.1% 1

Tire 424 3 10 13 33 3.1% 3

Curricle Vax 374 2 10 (1 Nid anno.)13 41 3.5% 7

Vax-2 393 2 10 (1 Nid anno.)13 37 3.3% 5

9.1 Benchmarks and Comparison System Designs
We evaluated Curricle using benchmarks from prior work [Surbatovich et al. 2021], tweaked to

compile with Curricle by converting atomic regions to functions and adding taint information to

function signatures. Table 1 characterizes our benchmarks and the code changes Curricle requires.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 136. Publication date: June 2023.



A Type System for Safe Intermittent Computing 136:19

At left is provenance, number of lines of code (LoC), atomic regions, and functions called in atomic

regions. Activity classifies human activity, CEM is a sensor logging and compression app, and

Greenhouse and Tire are sensor-driven alarm apps. We add two new benchmarks, Vax and Vax-2,
which record and compress multi-sensor data about a cold storage environment (e.g., vaccine

transport); Vax-2 is Vax refactored to avoid a WAR on array data. The first three columns on the

right show LoC for annotations, how many variables require type annotations, and percent increase

in LoC for annotations. Each application needs one annotation per atomic function, one to declare

Nid types, and one per function/closure called during atomic region execution, to provide taint

types. LoC overhead scales mainly with the number of functions called during atomic regions,

not total benchmark size, ranging from 0.6% to 3.5%. The last column shows the variable count of

Curricle’s inferred recovery list.

Table 2. Recovery System Designs

Channels Logging

All-Writes Mayfly TICS Coati

Ink Catnap BFree

Non-Id Set ∅ Alpaca Ocelot

CFG Pass Dino

Manual Chain Samoyed

To explore the benefits of Curricle, we compare to systems

that allow the programmer to express atomicity requirements.

We exclude systems that automatically place recovery points—

e.g., by periodic or energy-level triggered interrupts [Balsamo

et al. 2016, 2015] or software analysis [Maeng and Lucia 2018;

Van Der Woude and Hicks 2016]—because these systems do not

provide timeliness and consistency [Hester et al. 2017; Kortbeek

et al. 2020b; Surbatovich et al. 2021]. There are two main design

axes for atomic regions: which variables to recover and how. Table 2 organizes prior systems on

these axes. Systems either recover all written state or recover only potentially non-idempotent state.

Most systems use redo- or undo-logging mechanisms to recover state, but some use channels [Colin

and Lucia 2016; Hester et al. 2017; Yildirim et al. 2018] that double buffer data to eliminate WARs.

Logging all written data [Kortbeek et al. 2020a,b; Maeng and Lucia 2020; Ruppel and Lucia 2019] is

popular as the design choice does not need dataflow analyses or assumptions about pointers [Branco

et al. 2019]. Systems that identify variables manipulated non-idempotently do so using dataflow

analyses [Lucia and Ransford 2015; Maeng et al. 2017; Surbatovich et al. 2021, 2020] or manual

annotation [Maeng and Lucia 2019]. While Chain [Colin and Lucia 2016] allows the programmer to

manually identify which channels to double buffer, no channel-based system uses dataflow analysis

for automatic identification. We evaluate whether Curricle benefits the systems in Table 2, which

we refer to categorically as Channels, All-Writes, CFG-pass, and Id-Manual.
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Fig. 11. Normalized increase in allocation footprint and dynamic writes from logging all writes

9.2 Using Curricle’s Abstraction Lessens Overheads While Providing Correctness
Curricle alleviates the conservatism inherent inAll-Writes systems without requiring the intermit-

tent system designer to provide complex compiler analyses or to make the unchecked assumptions

of CFG-pass systems. We quantify the cost of the conservatism, comparing the amount of storage

required to store all written variables versus only Curricle-identified ones, as well as comparing
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dynamic write counts. Figure 11 shows these results. The left plot shows the increase in memory

footprint, and the right plot shows the increase in dynamic writes, normalized to the Curricle-

identified recovery list with a geometric mean increase at right. In all cases, the program writes

some data that need not be recovered for correctness. The data show that recovering all written

variables imposes on average a 2x overhead in write logging operations and a 3.14x overhead in

logging memory footprint. Curricle eliminates these overheads by reducing the total amount of

data to log, a benefit that is complementary to optimizing the logging mechanism itself.

Curricle’s reduction in logging overheads provides the quantitative benefits shown in Figure 11,

but also provides a qualitative benefit, sparing the system designer from implementing system-

specific WAR and RIO analyses (which prior work noted is undesirable [Branco et al. 2019]).

These analyses are brittle and complex for prior systems targeting C (see Section 2.2). Curricle

instead leverages Rust’s memory safety, allowing precise idempotence analysis as the Rust compiler

enforces necessary pointer restrictions. An intermittent system designer building a recovery system

targeting Curricle benefits from the reduced log overhead, has lower compiler complexity by

depending on Curricle’s analysis only, and need not impose unchecked pointer restrictions. Thus,

as summarized in Table 3, Curricle provides a performance benefit to All-Writes system designs,

a qualitative benefit of simplicity to CFG-pass designs, and correctness benefits to all the design

configurations we consider.

9.3 Curricle Enables Programmers to Express Idempotence Requirements Explicitly

Table 3. Benefits of using Curricle
(a) Summary of benefits to system designers

Benefit All-writes Id-Manual CFG-pass Curricle
Optimized set × ✓ ✓ ✓
Simpler Back-end ✓ ✓ × ✓
No Restrictions ✓ × × ✓
Checked Correct N/A × × ✓

(b) Summary of benefits to application programmers

Benefit All-writes Id-Manual CFG-pass Curricle
Express Spec × × × ✓
Checked Correct N/A × × ✓

Curricle gives programmers abstractions to

specify complex idempotence requirements

that are inexpressible in prior systems and

checks that the requirements are upheld. For

example, Vax and Vax-2 record a maximum

temperature sensor value. An All-write or

CFG-pass system will, by default, restore the

max flag on re-execution, as its update is non-
idempotent, allowing the application not to

record the actual highest sensed temperature.

Samoyed [Maeng and Lucia 2019] requires the

programmer to specify what parameters into an

atomic region have WARs, only logging those

variables (Samoyed ignores RIOs). A clever programmer could (ab-)use this unchecked annotation

approach to allow non-idempotence by purposely leaving WAR variables unlabeled. Samoyed

cannot, however, check whether an omission is purposeful or a bug. For systems that log all writes

or perform CFG analysis, a programmer may be able to avoid checkpointing some data with

low-level hacks. For example, a redo log instrumentation pass might identify variables to log by

examining the linker section in which they reside. A programmer can hack the linker script to

create a “non-idempotent” section and force a variable to be stored there, causing the analysis

pass to ignore it. This type of low-level approach requires an application programmer to delve into

system code, reason about information-flow manually, and rely on behaviour that is not part of the

recovery system’s specification. Curricle provides the programmer an abstraction with which to

specify variables as non-idempotent via its type system and checks that the program accesses cannot

violate the specification. Curricle furthermore defines the properties the system implementation

must provide to uphold the specification at runtime, providing a interface to the recovery system.
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10 RELATEDWORK
Curricle is primarily related to work in intermittent computing, information flow and idempotence

analysis, and work leveraging the ownership properties of Rust.

Intermittent Computing. How the memory consistency reasoning of past works [Colin and

Lucia 2016; Hester et al. 2017; Maeng et al. 2017; Maeng and Lucia 2019, 2020; Ruppel and Lucia 2019;

Surbatovich et al. 2021, 2020; Yildirim et al. 2018] relates to Curricle is discussed in themotivation and

evaluation. Curricle is the first intermittent computing work to provide a type system for reasoning

about idempotence. Ocelot [Surbatovich et al. 2021] is the only other intermittent computing work

targeting Rust, to the best of our knowledge. However, its correctness analysis is still in LLVM and

does not allow the programmer to express idempotence requirements. Coati [Ruppel and Lucia

2019] and Ink [Yildirim et al. 2018] address interrupt driven concurrency for intermittent systems

and Immortal Threads [Yıldız et al. 2022] provides multi-threading. Expanding the type-system for

concurrency is future work. Karma [Branco et al. 2019], Restop [Rodriguez Arreola et al. 2018],

and Sytare [Berthou et al. 2017] address retaining consistent state of peripheral input devices.

Work [Berthou et al. 2020] has been done in formalizing and proving this peripheral correctness.

This peripheral reasoning is complimentary to Curricle and could be integrated into the system

abstraction. [Maioli and Mottola 2020] argue that allowing programs to be intermittence aware

(i.e., use non-idempotent data) exposes new design pattern and performance optimizations, though

they do not define correctness in those scenarios. Curricle supports and formalizes this point of

view by providing the non-idempotent type to programmers, though future work should explore

endorsement of non-idempotent types. [Surbatovich et al. 2020] provide a formal framework for

reasoning about intermittent computing, defining a correct intermittent execution as one that

refines a continuous execution. Unlike Curricle, they do not allow any non-idempotence or provide

constructs for the programmer to express requirements. Curricle builds upon their language model

but supports more features, such as references and functions. Moreover, Curricle’s correctness

theorem is more general, showing non-interference.

Information Flow and Idempotence Analysis. Information flow type systems are a well-

studied technique in reasoning about program security [Heintze and Riecke 1998; Rajani et al. 2017;

Sabelfeld and Myers 2006; Zdancewic and Myers 2001]. Curricle’s type system draws inspiration

from integrity reasoning [Biba 1977], as it ensures that untrusted (non-idempotent) data does not

not flow to trusted (idempotent) data. Curricle’s checking of idempotence qualifiers for information

flow violations and taint propagation via taint qualifiers follow standard techniques. However,

Curricle does not check for security violations, but rather the presence of idempotence violations

on intermittent systems, requiring additional type qualification for access modes. Future work

extending Curricle to reason about distributed intermittent systems can integrate with work using

information flow types to reason about interactions between consistency models on geo-distributed

systems [Milano and Myers 2018].

Idempotence analysis has frequently been used to make systems more robust to failures, includ-

ing in idempotent processing [De Kruijf and Sankaralingam 2013; de Kruijf et al. 2012], logging

mechanisms for persistent memory systems [Liu et al. 2018], and for fault tolerance in distributed

systems [Ramalingam and Vaswani 2013]. These approaches do not use types or allow the pro-

gramer to specify custom idempotence requirements. Our support for non-idempotence draws

inspiration in spirit from Safe Nondeterminism [Bocchino et al. 2011], which provides language

support for controlled non-determinism in concurrent programs.

Ownership Types and Rust. Curricle’s type checking analysis relies on Rust’s linear types to

correctly identify accessed locations, as they prevent arbitrary aliasing. Curricle does not directly

model lifetimes and ownership, instead relying on the Rust compiler in the implementation. The
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Rustbelt [Dang et al. 2019; Jung et al. 2017] and Oxide [Weiss et al. 2019] projects provide formal,

Rust-like semantics, and Curricle could integrate more directly with these models in future work.

Many recent works take advantage of Rust’s strict typing to do static analysis that would be

prohibitively difficult with unrestricted pointer behaviour, including for functional verification

with constrained horn clauses [Matsushita et al. 2021], functional verification using pre- and post-

conditions of functions [Astrauskas et al. 2019], and in safely implementing compiler optimizations

around unsafe Rust code [Jung et al. 2019]. Closer to our work, [Balasubramanian et al. 2017]

and [Njor and Gústafsson 2021] demonstrate that Rust’s type system indeed makes more precise

static taint tracking possible, providing prototype information flow control and analysis tools. Most

recently, Flowistry [Crichton et al. 2022] shows that information flow in Rust can be analyzed

modularly, as the types are powerful enough that only function signatures are needed. The authors

formally prove their non-interference theorem using Oxide’s model. Unlike these works, Curricle

does not aim to provide information flow analysis for general Rust programs, but instead uses

information flow along with type-state to check if programs are safe for intermittent execution.

11 CONCLUSION & FUTUREWORK
This work presents Curricle, a type system for safe intermittence, and a requirements specification

for intermittent recovery systems. Curricle uses information flow reasoning and type qualifiers

to identify recovery lists and to disallow programs that cause unintentional non-idempotence.

Curricle obviates the need for intermittent system designers to write complex back-end analyses

while enabling them to benefit from the reduced recovery sets such an analysis would provide. A

programmer using Curricle can express more complex idempotence requirements than past work

allows, while simultaneously having assurance that their program will execute correctly.

Formally reasoning about future intermittent systems provides interesting directions for Curricle:

Concurrency. Some intermittent systems provide interrupt-driven concurrency [Branco et al.

2019; Ruppel and Lucia 2019; Yildirim et al. 2018], and future systems should support multi-tenancy.

Type checking that programs are safe to run intermittently and concurrently requires additions to

the model and type system to reason about shared memory dependencies and the non-determinism

of power failures and preemption together.

Outputs and Endorsement. To support distributed intermittent systems, desirable for smart

agriculture or smart city applications, Curricle should be extended with output operations, to

reason about communication protocols. Additionally, reasoning about interactions between non-

idempotent data and idempotent data in the context of concurrent systems and communication—

e.g., a reboot counter used by a scheduler or a replayed output—requires extending Curricle with

endorsement capabilities (i.e., lowering Nid types to Id types).

Studying User Interactions. This work argues that providing abstractions for non-idempotence

via types increases programmer expressivity and simplifies correctness reasoning, relying on the

general power of type systems. Further quantifying the usability of Curricle and future language

abstractions for concurrent and distributed intermittent systems requires dedicated user studies.
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